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Compressive Sensing

Replace samples with general linear measurements

y=>dx
M x 1 N x 1
measurements sampled
signal
M x N S-sparse

[ What are the pros and cons of “CS” in practice? ]




Compressive Sensing: An Apology

[Objection 1: CS is discrete, finite-dimensional ]

[Objection 2: Impact of noise ]

[Objection 3: Impact of quantization ]




Analog Sensing is Matrix Multiplication

If x(t) is bandlimited,

ylm] = (m(t),2()) = > a[n] (pm(t),sinc(t/Ts — n))
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Compressive Sensing: An Apology

[Objection 2: Impact of noise ]




Recovery from Noisy Measurements

Given y = ®x+e or y = ®(x+n),
find =

e Optimization-based methods
- basis pursuit, basis pursuit de-noising, Dantzig selector

T = argmin ||z|;
rERN

st Jly — ®zll2 <€

o Greedy/lterative algorithms
- OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT, ...



Stable Sighal Recovery

Suppose that we observe y = ®x + e and that ® satisfies the
RIP of order 25.

(=)l <02l < (1 +0)el} el <25 |

Typical (worst-case) guarantee

[ 16— l3 < Clel ]

Even if A = supp(x) is provided by an oracle, the error can
still be as large as ||z — z||3 = [le]|3/(1 —§) .



Stable Sighal Recovery: Part Il

Suppose now that ® satisfies

A=)l < B2l < AL +0) ol ol <25 |

In this case our guarantee becomes

. C
[ 7~ 2l3 < el ]

. R N
Unit-norm rows ‘ |z —z||5 < CMHGH%




Expected Performance

o Worst-case bounds can be pessimistic

 What about the average error?
- assume e is white noise with variance o2

E (Jlellz) = Mo~

- for oracle-assisted estimator
So?
<
= A1 - 9)

- if e is Gaussian, then for ¢, -minimization

E (|7 - z2)

/

E (|z —z|3) < ZSJQ log N



White Signal Noise

What if our signal = is contaminated with noise?
y=®(x+n)=>xr+ dn

Suppose ® has orthogonal rows with norm equal to vV B.
If n is white noise with variance o2, then ®n is white noise

with variance Bo?.

B
[ E ||z —z|3] < 0’2502 logN]

NR = 101 ( ) ‘ 3dB loss per octave
SNR = 10logy of subsampling
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Noise Folding

— 3dB per octave
- == =Oracle CS 1
CoSaMP CS : | . |
1 2 3 4 5 6 7
logy (N/M)

[D, Laska, Treichler, and Baraniuk - 2011]



Can We Do Better?

o Better choice of ¢ ?
e Better recovery algorithm?

If we knew the support of x a priori, then we could achieve

S

~ N
E ||z — z|3] ~ M802<< C’MSUQ log N

Is there any way to match this performance without knowing
the support of = in advance?

R} (®) =inf sup E[[|Z(Pz+e) — z||3]
vollzllosS



No!

ﬁeorem: \

If y=®z+ ewithe ~ N(0,0°1), then
N
[kl
If y = ®(x + n) with n ~ N(0,0%I), then

R* _(®) > C——So?log(N/S).

x N o 9
\ R (®) > OMSO' log(N/S). /

O=USV* =X Wy =V +V'n |V|i=M

See also: Raskutti, Wainwright, and Yu (2009)
Ye and Zhang (2010)

[Candes and D - 2011]



Proof Recipe

Ingredients [Makes o° = 1 servings]

« Lemma 1: Suppose X is a set of S-sparse points such that
|zi — LUJIIQ >8R}, (<I>) for all z;,z; € X.
Then§10g|‘)(’ 1 S 2‘X|2 Zzg ||(I)x’b (I)xJHQ

« Lemma 2: There exists a set X of S-sparse points such that

‘ /"*7|=(N/5)S/4
o ||z — x|l > 5 forall z;,z; € X
iy s wix ——I||< 2 for some 3 > 0

Instructions
Combine ingredients and add a dash of linear algebra.



Proof Outline

=2t Q= i vidl
7108(N/8) =2 < By 5 |02 — By 3

— Tr ((I)*q) (\?f% Zzg(% —xj)(z; — xﬂ)*))
= Tr (*D (2(Q — pp™)))

< 2Tr (&*PQ)

< 2Tr (0*®) || Q)|

< 2@} - 16R;,.,(®)(1+ 5)

) Slog(N/S)
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Recall: Lemma 2

Lemma 2: There exists a set X of S-sparse points such that
» |X] = (N/S)%/H
. ‘GCZ —ZlZ‘jHQ > % for all Ti, Tj € X

*

Strategy
Construct X by sampling (with replacement) from

U = {:1: e {0,/1/8, —/1/SWN : ||z|lo < S}
Repeat for |X| = (V/S)%/% iterations.
With probability > 0, the remaining properties are satisfied.

Key: Matrix Bernstein Inequality [Ahlswede and Winter, 2002]



Compressive Sensing: An Apology

[Objection 3: Impact of quantization ]




Sighal Recovery with Quantization

/ Integrator Sample-and-Hol Quantizer

Pseudorandom
Number |[«Seed

\ Generator /

e Finite-range quantization leads to saturation, i.e.,
unbounded errors on the largest measurements

e Quantization noise changes as we change the sampling rate



Saturation Strategies

e Rejection: Ignore saturated measurements

E

o

o Consistency: Retain saturated measurements.

Use them only as inequality constraints on the recovered
signal

e If the rejection approach works, the consistency approach
should automatically do better



Rejection and Democracy

The RIP is not sufficient for the rejection approach

Example: & =1
- perfect isometry
- every measurement must be kept

We would like to be able to say that any submatrix of ®
with sufficiently many rows will still satisfy the RIP

H:H

Strong, adversarial form of “democracy”



Sketch of Proof

e Step 1: Concatenate the identity to ®

/T heorem: \

If ®is a sub-Gaussian matrix with

)

then [® ]| satisfies the RIP of order S with
Qrobability at least 1 — 3¢~ “M, /

[D, Laska, Boufounos, and Baraniuk - 2009]



Sketch of Proof

e Step 2: Combine with the “interference cancellation”
lemma

~

| A 1 P(b:q)

B i ::'H' ‘ 5.:.] N ..F

« The fact that [® I] satisfies the RIP implies that if we take
D extra measurements, then we can delete O(D)
arbitrary rows of ® and retain the RIP

e This is a strong adversarial notion of democracy

[D, Laska, Boufounos, and Baraniuk - 2009]



Rejection In Practice

1Z—23



Rejection In Practice

EE Y T
SNR = 10log, ( L2l )




Rejection In Practice
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[Laska, Boufounos, D, and Baraniuk - 2011]



Benefits of Saturation
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[Laska, Boufounos, D, and Baraniuk - 2011]



Potential for SNR Improvement?

By sampling at a lower rate, we can quantize to a higher bit-
depth, allowing for potential gains

ENOB (b)
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SNR (dB)

Empirical SNR Improvement
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[D, Laska, Treichler, and Baraniuk - 2011]



Conclusions

Cons

e signal noise can potentially be a problem

e nonadaptivity entails a tremendous SNR loss

 if you have signal noise or can get benefits from averaging,

taking fewer measurements might be a really bad idea!

Pros

if quantization noise dominates the error, CS can
potentially lead to big improvements

novel strategies for handling saturation errors

low-bit “CS” might be useful even when M is relatively
large



