Compressive Measurements for Signal Acquisition and Processing

Mark Davenport

Rice University
ECE Department
Sensor Explosion
Data Deluge

By 2011, ½ of digital universe will have no home

[The Economist – March 2010]
Dimensionality Overload

How can we get as much data as possible into the digital domain?

How can we avoid having to acquire so much data?

How can we extract as much information as possible from a limited amount of data?

How can we extract any information at all from a massive amount of high-dimensional data?
Dimensionality Reduction

Data is rarely intrinsically high-dimensional

Signals often obey *low-dimensional models*
- sparsity
- manifolds
- low-rank matrices

The intrinsic dimension K can be much less than the ambient dimension N, which enables *dimensionality reduction*
Sparsity

\[x = \sum_{j=1}^{N} \alpha_j \psi_j \]

\[= \Psi \alpha \]

\[K \text{ nonzero entries} \]

\[\|\alpha\|_0 = K \]

\[N \text{ samples} \]

\[X(f) \]

\[K \ll N \text{ large Fourier coefficients} \]
Compressive Signal Processing

How can we exploit low-dimensional models in the design of signal processing algorithms?

We would like to operate at the \textit{intrinsic dimension} at all stages of the DSP pipeline.
Compressive Measurements
Compressive Measurements

Compressive sensing [Donoho; Candes, Romberg, Tao – 2004]
Replace samples with general *linear measurements*

\[y = \Phi x \]

\[M \times 1 \]
measurements

\[M \times N \]
sampled signal

\[N \times 1 \]
sampled signal

\[K \]-sparse

\[M = O(K \log(N/K)) \]
Restricted Isometry Property (RIP)

\[1 - \delta \leq \frac{\| \Phi x_1 - \Phi x_2 \|^2}{\| x_1 - x_2 \|^2} \leq 1 + \delta \quad \| x_1 \|_0, \| x_2 \|_0 \leq K \]

\[1 - \delta \leq \frac{\| \Phi x \|^2}{\| x \|^2} \leq 1 + \delta \quad \| x \|_0 \leq 2K \]
Johnson-Lindenstrauss Lemma

- Stable projection of a discrete set of P points

- Pick Φ at random using a sub-Gaussian distribution

- For any fixed x, $\|\Phi x\|_2$ concentrates around $\|x\|_2$ with (exponentially) high probability

- We preserve the length of all $O(P^2)$ difference vectors simultaneously if $M = O(\log P^2) = O(\log P)$.
JL Lemma Meets RIP

\[1 - \delta \leq \frac{\| \Phi x \|^2}{\| x \|^2} \leq 1 + \delta \quad \| x \|_0 \leq 2K \]

\[P = O \left(\left(\frac{N}{K} \right)^K \right) \quad \Rightarrow \quad M = O(K \log(N/K)) \]

[Baraniuk, M.D., DeVore, Wakin – Const. Approx. 2008]
Hallmarks of Random Measurements

Stable

\(\Phi \) will preserve information, be robust to noise

Universal

\(\Phi \) will work with *any* fixed orthonormal basis (w.h.p.)

\[
\begin{array}{cccc}
 y & \Phi & \Psi & \alpha \\
 \end{array}
\]

Democratic

Each measurement has “equal weight”
Compressive Measurements: Imaging

Rice “single-pixel camera”

[Duarte, M.D., Takhar, Laska, Sun, Kelly, Baraniuk – Sig. Proc. Mag. 2008]
Compressive Measurements: ADCs

“Random demodulator”

[Tropp, Laska, Duarte, Romberg, Baraniuk – Trans IT 2010]
Signal Acquisition and Recovery
Sparse Signal Recovery

- Optimization / ℓ_1-minimization
- Greedy algorithms
 - matching pursuit
 - orthogonal matching pursuit (OMP)
 - regularized OMP
 - CoSaMP, Subspace Pursuit, IHT, ...
Orthogonal Matching Pursuit

OMP selects one index at a time

Iteration 1:

\[j^* = \arg \max_j |\langle y, \Phi_j \rangle| \]

If \(\Phi \) satisfies the RIP of order \(\|u \pm v\|_0 \), then

\[|\langle \Phi u, \Phi v \rangle - \langle u, v \rangle| \leq \delta \|u\|_2 \|v\|_2 \]

Set \(u = x \) and \(v = e_j \)

\[|\langle y, \Phi_j \rangle - x_j| \leq \delta \|x\|_2 \]
Orthogonal Matching Pursuit

Subsequent Iterations:

\[j^* = \arg \max_j |\langle Py, P\Phi_j \rangle| \]

\[P = I - \Phi_\Lambda \Phi_\Lambda^\dagger \]

Projection onto \(\mathcal{R}(\Phi_\Lambda) \)

\[P\Phi_\Lambda = 0 \quad \Rightarrow \quad P\Phi x = P\Phi x_{\Lambda^c} \]
Interference Cancellation

Lemma

If Φ satisfies the RIP of order K, then

$$
\left(1 - \frac{\delta}{1 - \delta}\right) \|x\|_2^2 \leq \|P\Phi x\|_2^2 \leq (1 + \delta)\|x\|_2^2
$$

for all x such that $\|x\|_0 \leq K - |\Lambda|$ and $\text{supp}(x) \cap \Lambda = \emptyset$.

$$
|\langle Py, P\Phi_j \rangle - x_j| \leq \frac{\delta}{1 - \delta} \|x_{\Lambda^c}\|_2
$$

[M.D., Boufounos, Wakin, Baraniuk – J. Selected Topics in Sig. Proc. 2010]
Orthogonal Matching Pursuit

Theorem
Suppose x is K-sparse and $y = \Phi x$.
If Φ satisfies the RIP of order $K + 1$ with constant $\delta < \frac{1}{3\sqrt{K}}$, then the j^* identified at each iteration will be a nonzero entry of x.

Exact recovery after K iterations.

Argument provides simplified proofs for other orthogonal greedy algorithms (e.g. ROMP) that are robust to noise.

[M.D., Wakin – Trans. IT 2010]
Signal Recovery with Quantization

- Most algorithms are designed for \textit{bounded errors}.
- Finite-range quantization leads to \textit{saturation} and \textit{unbounded errors}.
- Being able to handle saturated measurements is \textit{critical} in any real-world system.
Saturation Strategies

- **Rejection**: Ignore saturated measurements

 ![Matrix Diagram](image)

- **Consistency**: Retain saturated measurements. Use them only as inequality constraints on the recovered signal

- If the rejection approach works, the consistency approach should automatically do better
Rejection and Democracy

• The RIP is **not sufficient** for the rejection approach.

• Example: $\Phi = I$
 - perfect isometry
 - *every* measurement must be kept

• We would like to be able to say that *any* submatrix of Φ with sufficiently many rows will still satisfy the RIP.

• Strong, **adversarial** form of “democracy”
Sketch of Proof

- Step 1: Concatenate the identity to Φ

Theorem:
If Φ is a sub-Gaussian matrix with

$$M = O \left(K \log \left(\frac{N}{K} \right) \right)$$

then $[\Phi \ I]$ satisfies the RIP of order K with probability at least $1 - 3e^{-CM}$.

• Step 2: Combine with the “interference cancellation” lemma

The fact that \([\Phi \ I]\) satisfies the RIP implies that if we take \(D\) extra measurements, then we can delete \(O(D)\) arbitrary rows of \(\Phi\) and retain the RIP.

\[P\Phi = \tilde{\Phi}\]

Rejection In Practice

\[
\text{SNR} = 10 \log_{10} \left(\frac{\|x\|_2^2}{\|\hat{x} - x\|_2^2} \right)
\]
Benefits of Saturation?

$\approx 5 \text{ dB} \quad \text{gain}$

SNR (dB)

T

Saturation Rate

[Laska, Boufounos, D, and Baraniuk, 2009]
Recovery in Structured Noise

What about structured measurement noise?

\[
y = \Phi [\Phi \ I] x + u \ I + e
\]
• Since $[\Phi \ I]$ satisfies the RIP, we can apply standard sparse recovery algorithms to recover u.
Compressive Signal Processing
Random measurements are *information scalable*

When and how can we directly solve signal processing problems directly from compressive measurements?
Example: FM Signals

- Can we directly recover a *baseband voice signal* without recovering the modulated waveform?
- Suppose we have compressive measurements of a digital communication signal (FSK modulated)

- Can we directly recover the encoded *bitstream* without first recovering the measured waveform?
Compressive Radio Receivers

Example Scenario
- 300 MHz bandwidth
- 5 FM signals (12 kHz)
- TV station interference
- Acquire compressive measurements at 30 MHz (20 x undersampled)

We must simultaneously solve several problems:

\[y \rightarrow \text{detect signal energy} \rightarrow \text{cancel known interferers} \rightarrow \text{filter signals of interest} \rightarrow \text{demod} \rightarrow \text{baseband signals} \]
Energy Detection

We need to identify where in frequency the important signals are located

Correlate measurements with projected tones

\[\hat{F}(k) = |\langle \Phi \cos(2\pi f_k t), y \rangle| \]

[M.D., Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – In Prep. 2010]
Filtering

If we have multiple signals, must be able to filter to isolate and cancel interference

\[P = I - \Phi S (\Phi S)^\dagger \]

\(S \) : Discrete prolate spheroidal sequences

[M.D., Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – In Prep. 2010]
Unsynchronized Demodulation

We can use a phase-locked-loop (PLL) to track deviations in frequency by directly operating on compressive measurements.

We can directly demodulate signals from compressive measurements \textit{without recovery}.

\[\langle \Phi x, \Phi u \rangle \]

[M.D., Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – In Prep. 2010]
Summary

• **Compressive signal processing**
 - integrates sensing, compression, processing
 - exploits signal sparsity/compressibility
 - enables new sensing modalities, architectures, systems
 - exploits randomness at many levels

• Why CSP works: preserves information in signals with concise geometric structure
 sparse signals | manifolds | low-dimensional models

• **Information scalability** for compressive inference
 - compressive measurements ~ sufficient statistics
 - much less computation required than for recovery
More Information

http://dsp.rice.edu/∼md

md@rice.edu
Acknowledgements

- Rich Baraniuk
- Ron DeVore
- Piotr Indyk
- Mark Embree
- Kevin Kelly
- Petros Boufounos
- Marco Duarte
- John Treichler
- Mike Wakin
- Chinmay Hegde
- Jason Laska
- Stephen Schnelle

“I not only use all the brains I have, but all I can borrow.”
-Woodrow Wilson