MINIMAX SUPPORT VECTOR MACHINES

Mark A. Davenport, Richard G. Baraniuk
Rice University
Electrical and Computer Engineering

Clayton D. Scott
University of Michigan
Electrical Engineering and Computer Science

Overview
- Classification: given some training data, find a classifier that generalizes.
- Notation:
 - pattern: \(x \in \mathbb{R}^d \)
 - label: \(y \in \{-1, +1\} \)
 - classifier: \(f : \mathbb{R}^d \rightarrow \{-1, +1\} \)
- \(P_E(f) := \Pr(f(x) \neq y) \)

Goal:
- Minimize \(P_E(f) \) by minimizing the misclassification rate using support vector machines (SVMs).

Minimax SVMs
- Consider cost-sensitive SVMs
- Introduce class-specific weights
- Adjust weights to achieve desired error rates
- Cross-validation (grid search)
 - expensive, high-variance

\[
\begin{align*}
\min_{w, \xi, \nu, \rho} & \quad \frac{1}{2} \|w\|^2 - \nu - \frac{1}{n} \sum_{i=1}^{n} \xi_i \quad \nu \in [0, 1] \\
\text{s.t.} & \quad (w^T x_i + b) y_i \geq \rho - \xi_i
\end{align*}
\]

Minimax Learning
- False alarm: \(P_F(f) := \Pr(f(x) = +1 | y = -1) \)
- Miss: \(P_M(f) := \Pr(f(x) = -1 | y = +1) \)
- \(P_E(f) := \pi_P P_F(f) + \pi_M P_M(f) \)

\[
\Pr(y = -1) \quad \Pr(y = +1)
\]

- True class frequencies are often not represented by the data, resulting in too much/little emphasis on one class
- 100 training samples
- 50 have cancer
- 50 do not
- 50% of population has cancer

\[
\min f \quad \text{arg} \min \max (P_M(f), P_F(f))
\]

Parameter Selection
- Possible strategies:
 - Cross-validation (grid search) on a grid of parameters
 - slow
 - guaranteed to find "optimal" parameters
 - Coordinate descent
 - fast
 - potentially prone to errors
 - Many variants possible

Experiments
- 11 datasets (100 permutations)
 - Full grid search (GS)
 - Coordinate descent (2D-CD, 3D-CD)
 - Bias-shifting (BS)
 - Balanced SVM (BAL)
 - Minimax Probability Machine (MPM)

Results
- Nemenyi test
 - Balanced datasets
 - Unbalanced datasets

Support Vector Machines
- Method for learning from training data
 - Use "kernel-trick"
 - Maximize the "margin"

Smoothing
- Cross-validation
- True error rate
- Smoothing error estimates
- Bias reduction

Key observations
- Accurate error estimation is critical
 - smoothing always helps
- Coordinate descent is surprisingly effective
- BS and BAL are significantly worse
- The minimax SVM outperforms the MPM even when the MPM parameters are set by an oracle