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Compressive Sensing (CS)
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[Can we really acquire analog signals with “CS”?]




Potential Obstacles
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Obstacle 1: CS is discrete, finite-dimensional
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Obstacle 2: Analog sparse representations

.




Obstacle 1

[Obstac/e 1: CS is discrete, finite-dimensional ]

For any bandlimited signal x(t),

y[m] — <¢m(t)ax(t)>
= Y z[n] (¢m(t),sinc(t/Ts — n))

nN=——0oo

For many practical architectures, y|m| will depend on
only a finite window of x|n].



Obstacle 2

[Obstac/e Z2: Analog sparse representations
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The structure of W will derive from a continuous-time
signal model.



Candidate Analog Signal Models

Multitone model:
— periodic signal
— DFT with S tones

— unknown amplitude ‘ |

Multiband model:

- aperiodic signal B R B
- DTFT with K bands .l

of bandwidth By and
— unknown spectra




Discrete Prolate Spheroidal
Sequences (DPSS’s)

DPSS’s (Slepian sequences)

Given N and W < z, the DPSS's are a

collection of IV real-valued discrete-time
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The DPSS’s are perfectly bandlimited, but when

)\%)W ~ 1 they are highly concentrated in time.
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DPSS Eigenvalue Concentration
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The first ~ 2NW eigenvalues ~ 1.

The remaining eigenvalues = 0.
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DPSS Examples
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Why DPSS’s?
Suppose that we wish to minimize

1 W )
ﬁ./—w ey — Pgeyllz df

: . , T
ejQﬂ'fO’ejQﬂ’f . .’GQQWf(N—]_)] .

over () where ey := [

Y

4 )
Optimal subspace of dimension & is the

one spanned by the first £k DPSS vectors.
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Approximation Performance
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DPSS’s for Passband Signals




DPSS Dictionaries for CS

Construct dictionary ¥ as
U= [U,Uy ..., Uy

where W, is the matrix of the first £ DPSS’s modulated
to fi = _% + (7“ T %) (Bband/ Bnyq)-
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U sparsely and accurately
represents most sampled | |

L multiband signals. )




DPSS Dictionaries and the RIP

Let W = %(Bband/Bnyq). Suppose that & is sub-
Gaussian and that the ¥, are constructed with

k=(1—¢€2NW. If
M > CSlog(N/S)
then with high probability ®W¥ will satisfy
(1=l < [@Tal3 < (1+9)|all;

for all S-sparse «.

K occupied bands == S ~ KN Bp,nd/Buyq
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Block-Sparse Recovery

Nonzero coefficients of & should be clustered in blocks
according to the occupied frequency bands

CU:[\Ifl,\IfQ,...,\IfJ] O

This can be leveraged to reduce the required number
of measurements and improve performance through
“model-based CS”

-Baraniuk et al. [2008, 2009, 2010]

-Blumensath and Davies [2009, 2011]



Recovery: DPSS vs DFT
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Interference Cancellation

DPSS’s can be used to cancel bandlimited interferers
without reconstruction.
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Extremely useful in compressive signal processing
applications.



Summary

e DPSS’s can be used to efficiently represent most
sampled multiband signals

- knowledge of occupied bands not necessary a priori
— far superior to DFT

e Two types of error: approximation + reconstruction
— approximation: small for most signals
— reconstruction: zero for DPSS-sparse vectors
— delicate balance in practice, but there is a sweet spot

e Applications
— signal reconstruction
— interference cancellation
— compressive signal processing



