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Digital Revolution 

“If we sample a signal at twice its highest    

frequency, then we can recover it exactly.” 

 Whittaker-Nyquist-Kotelnikov-Shannon  



Data with high-frequency content is often not intrinsically 

high-dimensional 

 

 

 

 

 

Signals often obey low-dimensional models 

– sparsity 

– manifolds 

– low-rank matrices 
 

The “intrinsic dimension”     can be much less than  

the “ambient dimension” 

Dimensionality Reduction 



Sample-Then-Compress Paradigm 

• Standard paradigm for digital data acquisition 

– sample data   (ADC, digital camera, …)  

– compress data   (signal-dependent, nonlinear) 

 

 

 

 

 

 

 

 
 

• Sample-and-compress paradigm is wasteful  

– samples cost $$$ and/or time 

 

JPEG 

MPEG 

… 

sample compress transmit/store 

receive decompress 



Compressive Sensing 

Replace samples with general linear measurements  
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[Donoho; Candès, Romberg, Tao - 2004] 
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Core Theoretical Challenges 

• How should we design the matrix     so that      is as small 

as possible? 

 

 

 

 

 

 

 

 

• How can we recover    from the measurements    ? 



Restricted Isometry Property (RIP) 



RIP Matrix: Option 1 

• Choose a random matrix 

– fill out the entries of     with i.i.d. samples from a sub-

Gaussian distribution 

– project onto a “random subspace” 

 

 

 

 

 [Baraniuk, Davenport, DeVore, Wakin –2008] 



RIP Matrix: Option 2 

“Fast Johson-Lindenstrauss Transform” 

• By first multiplying by random signs, a random 

Fourier/Hadamard submatrix can be used for efficient 

Johnson-Lindenstrauss (good) embeddings 

• If you multiply the columns of any RIP matrix by random 

signs, you get a JL embedding! 

 [Ailon and Chazelle – 2007; Krahmer and Ward - 2010 ] 



Hallmarks of Random Measurements 

Stable 

With high probability,    will preserve information, be robust to 

noise 
 

Universal  

      will work with any fixed orthonormal basis (w.h.p.) 

 

 

 

 

 

Democratic 

Each measurement has “equal weight” 



“Single-Pixel Camera” 

© MIT Tech Review 

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008] 



TI Digital Micromirror Device 



“Single-Pixel Camera” 

© MIT Tech Review 

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008] 



Sparse Signal Recovery 

support 
values 

• Optimization /    -minimization 
 

• Greedy algorithms 

– matching pursuit 

– orthogonal matching pursuit (OMP) 

– Stagewise OMP (StOMP), regularized OMP (ROMP) 

– CoSaMP, Subspace Pursuit, IHT, … 



Sparse Recovery: Noiseless Case 

•    -minimization: 

 

 

•    -minimization: 

 

 

 

• If     satisfies the RIP, then      and     are equivalent!  

 

  given              

find   

nonconvex 
NP-Hard 

convex 
linear program 

[Donoho; Candès, Romberg, Tao - 2004] 



Why     -Minimization Works 



Sparse Recovery: Noisy Case 

Suppose we observe                  , where    

 

 

 

 

 

 

 

 

 

Similar approaches can handle Gaussian noise added to either 

the signal or the measurements  



Sparse Recovery: Non-sparse Signals 

In practice,    may not be exactly    -sparse 



Greedy Algorithms: Key Idea 

If we can determine                   , then the problem becomes 

over-determined.  

 

 

 

 

 

 

In the absence of noise,   



Matching Pursuit 

Select one index at a time using a simple proxy for  

 

 

 

 

 

 

If     satisfies the RIP of order              , then 

 

 

Set            and 



Matching Pursuit 

Obtain initial estimate of 

 

 

 
 

Update proxy and iterate 



Iterative Hard Thresholding (IHT) 

[Blumensath and Davies – 2008] 

proxy vector 

step size 

hard thresholding 

RIP guarantees convergence and accurate/stable recovery 



Extensions of Matching Pursuit  

• Orthogonal matching pursuit 

– change update rule to ensure that the residual  

is always orthogonal to previously selected columns  

– ensures that we never pick a column twice 

 

• StOMP, ROMP 

– select many indices in each iteration 

– picking indices for which      is “comparable” leads to 

increased stability and robustness 

 

• CoSaMP, Subspace Pursuit, … 

– allow indices to be discarded 

– strongest guarantees, comparable to    -minimization 



Applications of CS to Imaging 

• MRI 

– Observe randomly selected Fourier coefficients 

– Exploit sparsity in wavelet basis 

 



Min TV, 34.23dB [CR] 

Backproj., 29.00dB 256x256 MRA 

Fourier sampling 

80 lines (M~0.28N) 



Traditional MRI CS MRI 

 

4-8 x faster! 

[Vasanawala, Alley, Hargreaves, Barth, Pauly, Lustig - 2010] 



Applications of CS to Imaging 

• MRI 

– Observe randomly selected Fourier coefficients 

– Exploit sparsity in wavelet basis 

 

• Single pixel camera 

– Replace light sensor with something more sophisticated 

 SWIR sensor 

 Spectrometer 

 … 

 



SWIR Single Pixel Camera 

pixels 



Applications of CS to Imaging 

• MRI 

– Observe randomly selected Fourier coefficients 

– Exploit sparsity in wavelet basis 

 

• Single pixel camera 

– Replace light sensor with something more sophisticated 

 SWIR sensor 

 Spectrometer 

 … 

 

• Many more 

 



Challenges 

Imaging challenges some of the key assumptions in much of 

the CS theory 
 

• In the context of imaging,    tells us how light propagates 

through our system 

– nonnegative 

– non-standard normalization 

 

• Gaussian noise is often not a safe assumption 

– poisson noise models are generally more difficult to exploit 

and analyze 



Why is This a Problem? 

• Standard CS theory suggests setting the entries of  

to be   

• In imaging we must shift and rescale   

 

 

 

• Entries now are either 0 or 

• Observations given by 

signal DC offset 

(photon noise) 



Dynamic Range 

What about the impact of quantization? 



Conclusions 

• The theory of compressive sensing allows for new sensor 

designs, but requires new techniques for signal recovery 
  

• Compressive sensing can be applied in the context of 

imaging, but doing so successfully requires an awareness of 

the gaps between CS theory and imaging practice 

 

• Many open questions remain 

– CS may seem more sensitive to noise, but enables the use of 

higher quality sensors.  What is the real impact of noise? 

– How sensitive is CS to imperfect system models? 

– How does CS impact the dynamic range of our system?     


