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Digital Revolution

-

“If we sample a signal at twice its highest
frequency, then we can recover it exactly.”

Whittaker-Nyquist-Kotelnikov-Shannon )




Dimensionality Reduction

Data with high-frequency content is often not intrinsically
high-dimensional

Signals often obey low-dimensional models
- sparsity
- manifolds
- low-rank matrices

The “intrinsic dimension” S can be much less than
the “ambient dimension” NV



Sample-Then-Compress Paradigm

« Standard paradigm for digital data acquisition
- sample data (ADC, digital camera, ...)
- compress data (signal-dependent, nonlinear)

N > S

|.W x 4'[ sample]—-[ compress ]—-[ transmlt/store

JPEG
MPEG

S N
receive ]—'[ decompress ]—' T e
o Sample-and-compress paradigm is wasteful
- samples cost $SS and/or time




Compressive Sensing

Replace samples with general linear measurements

y= Pz
M x 1 N x 1
measurements sampled
sighal
M x N S-sparse

[Donoho; Candes, Romberg, Tao - 2004]
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Core Theoretical Challenges

e How should we design the matrix ® so that M is as small
as possible?
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e« How can we recover x from the measurements vy ?



Restricted Isometry Property (RIP)
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RIP Matrix: Option 1

e Choose a random matrix

- fill out the entries of ® with i.i.d. samples from a sub-
Gaussian distribution

- project onto a “random subspace”

M = O(Slog(N/S)) < N

[Baraniuk, Davenport, DeVore, Wakin -2008]



RIP Matrix: Option 2
“Fast Johson-Lindenstrauss Transform’

)

e By first multiplying by random signhs, a random
Fourier/Hadamard submatrix can be used for efficient
Johnson-Lindenstrauss (good) embeddings

e If you multiply the columns of any RIP matrix by random
signs, you get a JL embedding!

[Ailon and Chazelle - 2007; Krahmer and Ward - 2010 ]



Hallmarks of Random Measurements

Stable

With high probability, ® will preserve information, be robust to
noise

Universal

® will work with any fixed orthonormal basis (w.
Y

Democratic
Each measurement has “equal weight”




“Single-Pixel Camera”

2] = //:U(t:tg)dtldtg

pixel n

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008]
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“Single-Pixel Camera”

2] = //:U(t:tg)dtldtg

pixel n

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008]



Sparse Signal Recovery

Y )

support
values

e Optimization / /1 -minimization

e Greedy algorithms
- matching pursuit
- orthogonal matching pursuit (OMP)
- Stagewise OMP (StOMP), regularized OMP (ROMP)
- CoSaMP, Subspace Pursuit, IHT, ...



Sparse Recovery: Noiseless Case

r “
giveny = ®x
find
\ Y
e /p-minimization: ¥ = argmin ||x||o « honconvex
reRN NP-Hard
s.t. y=ox
e ¢,-minimization: 7 = argmin ||z||; convex
zERY linear program
s.t. y=ox

o If ® satisfies the RIP, then ¢; and ¢; are equivalent!

[Donoho; Candes, Romberg, Tao - 2004]



Why /¢;-Minimization Works

T = argmin ||x||;
rERN

s.t. y=>ox

{2/ : @2’ =y}



Sparse Recovery: Noisy Case
Suppose we observe y = ®x + ¢, where |le]|2 < €

T = arg min ||z||;
rERN

s.t. |y — Px|ls <e

[ |7 — z||2 < Coe ]

Similar approaches can handle Gaussian noise added to either
the signal or the measurements




Sparse Recovery: Non-sparse Signals
In practice, * may not be exactly S-sparse

T = arg min ||z||;
rERN

s.t. |y — Px|ls <e
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Greedy Algorithms: Key ldea

If we can determine A = supp(x), then the problem becomes
over-determined.
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Matching Pursuit

Select one index at a time using a simple proxy for x

p= oy

[ j* = arg max |p;| J
J

If & satisfies the RIP of order ||[u + v||g, then

[{Qu, Pv) — (u, v)| < dl[ull2]|v]2

Set u=x and v = ¢;
pj — x5 < 0lz[2
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Matching Pursuit

Obtain initial estimate of «

[ ) =pj-e;- ]

Update proxy and iterate
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j° = argmax |p;|
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Iterative Hard Thresholding (IHT)

step size

|

zU) = Hg (x(j—l) 4 M:I)T (y _ q)x(j—l)))

[ Y

hard thresholding proxy vector

RIP guarantees convergence and accurate/stable recovery

[Blumensath and Davies - 2008]



Extensions of Matching Pursuit

e Orthogonal matching pursuit

- change update rule to ensure that the residual y — dxlP)
is always orthogonal to previously selected columns

- ensures that we never pick a column twice

e StOMP, ROMP

- select many indices in each iteration

- picking indices for which p; is “comparable” leads to
increased stability and robustness

e CoSaMP, Subspace Pursuit, ...
- allow indices to be discarded
- strongest guarantees, comparable to /;-minimization



Applications of CS to Imaging

e MRI
- Observe randomly selected Fourier coefficients
- Exploit sparsity in wavelet basis
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Traditional MRI CS MRI

4-8 x faster!

[Vasanawala, Alley, Hargreaves, Barth, Pauly, Lustig - 2010]



Applications of CS to Imaging

e MRI
- Observe randomly selected Fourier coefficients
- Exploit sparsity in wavelet basis

e Single pixel camera

- Replace light sensor with something more sophisticated
= SWIR sensor
= Spectrometer



SWIR Single Pixel Camera
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Applications of CS to Imaging

e MRI
- Observe randomly selected Fourier coefficients
- Exploit sparsity in wavelet basis

e Single pixel camera

- Replace light sensor with something more sophisticated
= SWIR sensor
= Spectrometer

e Many more



Challenges

Imaging challenges some of the key assumptions in much of
the CS theory

e In the context of imaging, ® tells us how light propagates
through our system

- nonnegative
- non-standard normalization

e Gaussian noise is often not a safe assumption

- poisson noise models are generally more difficult to exploit
and analyze



Why is This a Problem?

Standard CS theory suggests setting the entries of ®
tobe+1/vM

In imaging we must shift and rescale ®

5_ e+1/VM
= —

Entries now are either O or 1/M
Observations given by

y:;I;a:—l—e:

signal DC offset
(photon noise)



Dynamic Range

What about the impact of quantization?
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Conclusions

e The theory of compressive sensing allows for new sensor
designs, but requires new techniques for signal recovery

o Compressive sensing can be applied in the context of
imaging, but doing so successfully requires an awareness of
the gaps between CS theory and imaging practice

e Many open questions remain

- CS may seem more sensitive to noise, but enables the use of
higher quality sensors. What is the real impact of noise?

- How sensitive is CS to imperfect system models?
- How does CS impact the dynamic range of our system?



