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Compressive Sensing
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When (and how well) can we
estimate x from the measurements y?
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« We are using most of our “sensing power” to sense entries
that aren’t even there!

« Tremendous loss in signal-to-noise ratio (SNR)

e It’s hard to imagine any way to avoid this...
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y= Az + =z 2z~ N(0,0°1)

Suppose that A has unit-norm rows.

There exist matrices A such that for any = with ||z|og < &

E|z - 2|2 < C-—ko?logn.
™m

For any choice of A and any possible recovery algorithm,
there exists an z with ||z||o < k such that

E |z — |2 > C'~ko?log(n/k).
m
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Simple strategy: Use m /2 measurements to find the support
(envelope), and the remainder to estimate the values.



Thought Experiment

Suppose that after m /2 measurements we have perfectly
estimated the locations of the nonzeros.
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Limits of Adaptivity

Suppose we have a budget of m measurements of the form
yi = (a;, ) + z; where ||a;||2 = 1 and z; ~ N(0,0?)

The vector a; can have an arbitrary dependence on the
measurement history, i.e., (a1,v1),-.., (@Gi—1,Yi—1)

4heorem \

There exist x with ||z|lo < k such that for any adaptive
measurement strategy and any recovery procedure Z,

- 4 n
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Qhus, adaptivity seemingly does not significantly help!/

[Arias-Castro, Candes, and Davenport - 2011]
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Adaptivity In Practice

Suppose that £ =1 and that x;+ = u

Recursive Bisection
- split measurements into logn stages

- in each stage, use measurements to decide if the nonzero is
in the left or right half of the “active set”

- after subdividing logn times, return support




Experimental Results
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Analysis

Compressive binary search can successfully identify the
location of the nonzero when

u>Cy/n/m

No method can succeed unless

w>C'\/n/m

By iteration and/or divide-and-conquer approaches, can
easily generalize this method to k-sparse vectors
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e But when it does, the benefits are overwhelming

e Current techniques are not practical in many important
situations

- sensing process is typically constrained in some way

- how to adapt the sensing process without violating these
constraints?

- how to retain the simple computational complexity of the
decisions made at each step?



