Compressive Measurements for Signal Acquisition and Processing

Mark Davenport

Rice University ECE Department

Sensor Explosion

Data Deluge

By 2011, 1/2 of digital universe will have no home

[The Economist – March 2010]

Dimensionality Overload

How can we extract any information at all from a massive amount of high-dimensional data?

Dimensionality Reduction

Data is rarely intrinsically high-dimensional

Signals often obey *low-dimensional models*

- sparsity
- manifolds
- low-rank matrices

The intrinsic dimension K can be much less than the ambient dimension N, which enables **dimensionality reduction**

Sparsity

Manifolds

- K-dimensional parameter $\theta \in \Theta$ captures the degrees of freedom of signal
- Signal class forms a *K*-dimensional *manifold*
 - rotations, translations
 - robot configuration spaces
 - signal with unknown translation
 - sinusoid of unknown frequency
 - faces
 - handwritten digits
 - speech

 \mathbb{R}^{N}

 x_{θ}

 θ

Compressive Signal Processing

How can we exploit lowdimensional models in the design of signal processing algorithms?

We would like to operate at the *intrinsic dimension* at all stages of the DSP pipeline

Compressive Measurements

Compressive Measurements

Compressive sensing [Donoho; Candes, Romberg, Tao – 2004] Replace samples with general *linear measurements*

$$y = \Phi x$$

Restricted Isometry Property (RIP)

$$1 - \delta \le \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \le 1 + \delta \qquad \|x_1\|_0, \|x_2\|_0 \le K$$

Johnson-Lindenstrauss Lemma

• Stable projection of a discrete set of ${\cal P}$ points

- Pick Φ at *random* using a *sub-Gaussian* distribution
- For any fixed x, $\|\Phi x\|_2$ concentrates around $\|x\|_2$ with (exponentially) high probability
- We preserve the length of all $O(P^2)$ difference vectors simultaneously if $M = O(\log P^2) = O(\log P)$.

JL Lemma Meets RIP

$$1 - \delta \le \frac{\|\Phi x\|_2^2}{\|x\|_2^2} \le 1 + \delta \qquad \|x\|_0 \le 2K$$

$P = O\left((N/K)^K \right) \implies M = O(K \log(N/K))$

[Baraniuk, M.D., DeVore, Wakin – Const. Approx. 2008]

Hallmarks of Random Measurements

Stable

 Φ will preserve information, be robust to noise

Universal

 Φ will work with **any** fixed orthonormal basis (w.h.p.)

Democratic

Each measurement has "equal weight"

Compressive Measurements: Imaging

Rice "single-pixel camera"

[Duarte, M.D., Takhar, Laska, Sun, Kelly, Baraniuk – Sig. Proc. Mag. 2008]

Compressive Measurements: ADCs

"Random demodulator"

[Tropp, Laska, Duarte, Romberg, Baraniuk – Trans IT 2010]

Signal Acquisition and Recovery

Sparse Signal Recovery

- Optimization / ℓ_1 -minimization
- Greedy algorithms
 - matching pursuit
 - orthogonal matching pursuit (OMP)
 - regularized OMP
 - CoSaMP, Subspace Pursuit, IHT, ...

Orthogonal Matching Pursuit

OMP selects one index at a time

Iteration 1:

$$j^* = rg\max_j |\langle y, \Phi_j \rangle|$$

If Φ satisfies the RIP of order $\|u \pm v\|_0$, then

$$|\langle \Phi u, \Phi v \rangle - \langle u, v \rangle| \le \delta ||u||_2 ||v||_2$$

Set u = x and $v = e_j$

$$|\langle y, \Phi_j \rangle - x_j| \le \delta \|x\|_2$$

Orthogonal Matching Pursuit

Subsequent Iterations:

$$j^* = \arg\max_{j} |\langle Py, P\Phi_j \rangle|$$

$$P = I - \Phi_{\Lambda} \Phi_{\Lambda}^{\dagger}$$

Projection onto $\mathcal{R}(\Phi_{\Lambda})$

 $P\Phi_{\Lambda} = 0 \implies P\Phi x = P\Phi x_{\Lambda^c}$

Interference Cancellation

Lemma If Φ satisfies the RIP of order K, then $\left(1 - \frac{\delta}{1 - \delta}\right) \|x\|_2^2 \le \|P\Phi x\|_2^2 \le (1 + \delta)\|x\|_2^2$ for all x such that $\|x\|_0 \le K - |\Lambda|$ and $\operatorname{supp}(x) \cap \Lambda = \emptyset$.

$$\implies |\langle Py, P\Phi_j \rangle - x_j| \le \frac{\delta}{1-\delta} \|x_{\Lambda^c}\|_2$$

[M.D., Boufounos, Wakin, Baraniuk – J. Selected Topics in Sig. Proc. 2010]

Orthogonal Matching Pursuit

Theorem

Suppose x is K-sparse and $y = \Phi x$. If Φ satisfies the RIP of order K + 1 with constant $\delta < \frac{1}{3\sqrt{K}}$, then the j^* identified at each iteration will be a nonzero entry of x.

 \implies Exact recovery after K iterations.

Argument provides simplified proofs for other orthogonal greedy algorithms (e.g. ROMP) that are robust to noise

[M.D., Wakin – Trans. IT 2010]

Signal Recovery with Quantization

- Most algorithms are designed for *bounded errors*
- Finite-range quantization leads to *saturation* and *unbounded errors*
- Being able to handle saturated measurements is critical in any real-world system

Saturation Strategies

• **Rejection:** Ignore saturated measurements

- **Consistency:** Retain saturated measurements. Use them only as inequality constraints on the recovered signal
- If the rejection approach works, the consistency approach should automatically do better

Rejection and Democracy

- The RIP is *not sufficient* for the rejection approach
- Example: $\Phi = I$
 - perfect isometry
 - every measurement must be kept
- We would like to be able to say that any submatrix of Φ with sufficiently many rows will still satisfy the RIP

Strong, *adversarial* form of "democracy"

Sketch of Proof

• Step 1: Concatenate the identity to Φ

Theorem:

If Φ is a sub-Gaussian matrix with

$$M = O\left(K \log\left(\frac{N}{K}\right)\right)$$

then $[\Phi \ I]$ satisfies the RIP of order K with probability at least $1 - 3e^{-CM}$

[M.D., Laska, Boufounos, Baraniuk – Tech. Rep. 2009]

Sketch of Proof

• Step 2: Combine with the "interference cancellation" lemma

• The fact that $[\Phi\ I]$ satisfies the RIP implies that if we take D extra measurements, then we can delete O(D) arbitrary rows of Φ and retain the RIP

[M.D., Laska, Boufounos, Baraniuk – Tech. Rep. 2009]

Rejection In Practice

SNR =
$$10 \log_{10} \left(\frac{\|x\|_2^2}{\|\widehat{x} - x\|_2^2} \right)$$

Benefits of Saturation?

[Laska, Boufounos, D, and Baraniuk, 2009]

Recovery in Structured Noise

What about structured measurement noise?

Justice Pursuit

- Since $[\Phi I]$ satisfies the RIP, we can apply standard sparse recovery algorithms to recover u
- Analogous to joint source/channel coding for sparse signals with erasure channel

Fixed
$$\kappa = 10$$

Compressive Signal Processing

Random measurements are *information scalable*

When and how can we directly solve signal processing problems directly from compressive measurements?

Compressive ADCs

DARPA "Analog-to-information" program: Build high-rate ADC for signals with sparse spectra

From: R.H. Walden, "Analog to Digital Converters and Associated IC Technologies," 2008

Example: FM Signals

- Can we directly recover a *baseband voice signal* without recovering the modulated waveform?
- Suppose we have compressive measurements of a digital communication signal (FSK modulated)

• Can we directly recover the encoded *bitstream* without first recovering the measured waveform?

Compressive Radio Receivers

Example Scenario

- 300 MHz bandwidth
- 5 FM signals (12 kHz)
- TV station interference
- Acquire compressive measurements at 30 MHz (20 x undersampled)

We must simultaneously solve several problems

Energy Detection

We need to identify where in frequency the important signals are located

Correlate measurements with projected tones

$$\widehat{F}(k) = |\langle \Phi \cos(2\pi f_k t), y \rangle|$$

[M.D., Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – In Prep. 2010]

Filtering

If we have multiple signals, must be able to filter to isolate and cancel interference

$$P = I - \Phi S (\Phi S)^{\dagger}$$

S : Discrete prolate spheroidal sequences

[M.D., Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – In Prep. 2010]

Unsynchronized Demodulation

We can use a phase-locked-loop (PLL) to track deviations in frequency by directly operating on compressive measurements

We can directly demodulate signals from compressive measurements *without recovery*

[M.D., Schnelle, Slavinsky, Baraniuk, Wakin, Boufounos – In Prep. 2010]

CSP – Summary

Compressive signal processing

- integrates sensing, compression, processing
- exploits signal sparsity/compressibility
- enables new sensing modalities, architectures, systems
- exploits randomness at many levels
- Why CSP works: preserves information in signals with concise geometric structure sparse signals | manifolds | low-dimensional models

• Information scalability for compressive inference

- compressive measurements ~ sufficient statistics
- much less computation required than for recovery

Looking Forward

Some Open Problems

- Links with information theory
 - ex: random projection design via codes
 - ex: new decoding algorithms (BP, etc.)
 - ex: democracy and multiple description coding
- Links with machine learning

 ex: Johnson-Lindenstrauss, manifold embedding, RIP
- **Processing/inference** on random measurements

Multi-signal CSP

- sensor networks, localization, multi-modal data...

New sensors

- single-pixel gas sensor, hyperspectral cameras
- scientific imaging (astronomy, microscopy)
- genomic data, DNA microarrays

Beyond Sparsity

- Learned dictionaries, structured sparsity
- Manifold models
 - connections to "finite rate of innovation"
- Low-rank matrix models
- Models for non-numerical data
 - graphical models

Acknowledgements

- Rich Baraniuk
- Ron DeVore
- Piotr Indyk
- Mark Embree
- Kevin Kelly
- Petros Boufounos
- Marco Duarte
- John Treichler
- Mike Wakin
- Chinmay Hegde
- Jason Laska
- Stephen Schnelle

"I not only use all the brains I have, but all I can borrow." -Woodrow Wilson

More Information

http://dsp.rice.edu/~md

md@rice.edu