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Compressed Sensing (CS)

 Observe

 Random measurements

-sparse



Randomness in CS
New signal models
New applications
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 This is not light reading…



“Proof” of RIP

“It uses a lot of newer 
mathematical techniques, 
things that were developed 
in the 80's and 90's. 
Noncommutative 
geometry, random 
matrices … the proof is 
very… hip.”  - Hal



Dimensionality Reduction

 Point dataset lives in high-dimensional space

 Number of data points is small

 Compress data to few dimensions

 We do not lose information – can distinguish data 
points
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Johnson-Lindenstrauss Lemma

 Proof relies on a simple concentration of measure 
inequality



 Gaussian

 Bernoulli [Achlioptas]
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 “Database-friendly” [Achlioptas]

 Fast JL Transform [Ailon, Chazelle]

Favorable JL Distributions

: Sparse Gaussian matrix 
: Fast Hadamard transform
: Random modulation
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 Theorem: Supposing F is drawn from a JL-favorable 
distribution, then with probability at least 1 - , F
meets the RIP with                           .

 Key idea

 construct a set of points Q

 apply JL lemma (union bound on concentration of measure)

 show that isometry on Q extends to isometry on

JL Meets CS  [Baraniuk, DeVore, Davenport, Wakin]
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has RIP of order K if there exists

such that

for all

 Fix a K-dimensional subspace

 Consider only

Pick Q such that for any
there exists a     such that 
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Bootstrapping

 Apply JL to get

 Define A to be the smallest number such that

for all    with

 For any   , pick the closest

 Hence
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Universality

 Easy to see why random matrices are universal 
with respect to sparsity basis

 Resample your points in new basis – JL provides 
guarantee for arbitrary set of points

 Gaussian

 Bernoulli

 Others…
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 Better understanding of the relevant geometry

 provides simple proofs of key CS / n-width results

 New conditions on what it takes to be a good CS 
matrix

 concentration of measure around the mean

 New signal models

 manifolds  

 Natural setting for studying information scalability

 detection

 estimation

 learning

Summary



Randomness in CS
New signal models

New applications



Manifold Compressive Sensing

 Locally Euclidean topological space

 Typically for signal processing

 nonlinear K-dimensional “surface” in signal space RN

 potentially very low dimensional signal model

 Examples (all nonlinear)

 chirps

 modulation schemes

 image articulations



Stable Manifold Embedding

Stability [Wakin, Baraniuk]

Number of measurements required



Example:  Linear Chirps

original initial guess initial error

N = 256

K = 2 (start & end frequencies)

M = 5:   55% success

M = 30: 99% success



Manifold Learning

 Manifold learning algorithms
for sampled data in RN

 ISOMAP, LLE, HLLE, etc.

 Stable embedding preserves 
key properties in RM

 ambient and geodesic distances

 dimension and volume of the manifold

 path lengths and curvature

 topology, local neighborhoods, and angles

 etc…

 Can we learn these properties from projections in RM ?

 savings in computation, storage, acquisition costs



Example:  Manifold Learning

ISOMAP HLLE
Laplacian

Eigenmaps

R4096

RM

M=15 M=15M=20



Randomness in CS
New signal models
New applications



Detection – Matched Filter

 Testing for presence of a known signal s

 Sufficient statistic for detecting s:



Compressive Matched Filter

 Now suppose we have CS measurements

 when      is an orthoprojector,         remains white noise

 new sufficient statistic is simply the 
compressive matched filter (smashed filter?)



CMF – Performance

 ROC curve for Neyman-Pearson detector:

 From JL lemma, for random orthoprojector

 Thus 



CMF – Performance



Generalization – Classification

 More generally, suppose we want to classify 
between several possible signals

by the JL Lemma 
these distances 
are preserved



CMF as an Estimator

 How well does the compressive matched filter 
estimate the output of the true matched filter?

With probability at least

where 

[Alon, Gibbons, Matias, Szegedy; 

Davenport, Baraniuk, Wakin]
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 Random matrices work for CS for the same reason 
that they work for the JL lemma

 Another way to characterize “good” CS matrices

 Allows us to extend CS to new signal models

 manifold/parametric models

 Allows us to extend CS to new settings

 detection

 classification/learning

 estimation


