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Compressed Sensing (CS)

= Observe y = Pz
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= Random measurements



Randomness in CS
New signal models
New applications
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Proof of RIP

= Random matrix will satisfy RIP for largest
possible K with high probability

[Candes, Tao; Donoho]

= Appeal to known results on singular values of

random matrices [Davidson, Szarek; Litvak, Pajor,
Rudelson, Tomczak-Jaegermann]

= This is not light reading...



“Proof” of RIP

“It uses a lot of newer
mathematical techniques,
things that were developed
in the 80's and 90's.
Noncommutative
geometry, random
matrices ... the proof is
very... hip.” - Hal



Dimensionality Reduction

Point dataset lives in high-dimensional space
Number of data points is small
Compress data to few dimensions

We do not lose information — can distinguish data
points
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Johnson-Lindenstrauss Lemma

Let e € (0,1) be given. For every set Q of |Q| points in
RY, if

M= O (Iog(lcjl/fS)) |

€
a randomly drawn M x N matrix & will satsify

(1= 9)|lu—ollfy < [|Pu— Poflfu < (1+ €)llu— |7
for all u,v € Q with probability at least 1 — 9.



Johnson-Lindenstrauss Lemma

Let e € (0,1) be given. For every set @ of |Q| points in
RY, if

M= O (Iog(lgl/@) |

€
a randomly drawn M x N matrix & will satsify

(1= u—v|7 < [[Pu—dvlfy < (14 )flu—|

for all u,v € Q with probability at least 1 — 9.

= Proof relies on a simple concentration of measure
iInequality
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P(| Pzl — llzllfy] > ellzllfy) < 2e~M</



Favorable JL Distributions

s Gaussian

1
Gij ~ N(O, M)

s Bernoulli [Achlioptas]

| "VLM with probability
Pij = _\/LM with probability

NI~ N~



Favorable JL Distributions

s 'Database-friendly” [Achlioptas]

(
+,/<  with probability
0

i =« with probability

3 . -
\ _1/M with probability
s Fast JL Transform [Ailon, Chazelle]

b =PHD

P : Sparse Gaussian matrix
H : Fast Hadamard transform
D : Random modulation
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JL Meets CS [Baraniuk, DeVore, Davenport, Wakin]

= Theorem: Supposing @ is drawn from a JL-favorable
distribution, then with probability at least 1 - 5, ®
meets the RIP with M = O(K log(N/K).

= Key idea
o construct a set of points Q
o apply JL lemma (union bound on concentration of measure)
o show that isometry on Q extends to isometry on 2_

E
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Recall: RIP

& has RIP of order K if there exists € € (0, 1)
such that

(1 =9zl < lI®zllz, < (1 + =l

forall T € 2

= Fix a K-dimensional subspace
= Consider only ||z|le, < 1

R* Pick Q such that for any =

6h there exists a ¢ such that

€
T — < —
o —qlle. < 5
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Bootstrapping

= Apply JL to get
(1 —¢/2)[lglle, < ||Pglle, < (14 €/2)]lq]le,

s Define A to be the smallest number such that
[Pz, < (14 Az,

for all  with ||z|le, <1

= For any z, pick the closest ¢q
[Pzllr, < ||Pglle, + ||P(z — q)|e
<14e¢/24+(1+ A)e/4

m Hence 1+ A<14+¢/24+(1+A)e/4d = A<e
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‘ How Many Points?

= For each K-dimensional space, we need (12/¢)*

N eN\" .
o ( ) < [ == spaces to consider
K/ — \ K

= How many measurements do we need to get RIP
with probability at least 1 — 67

|09(|Q|/5))
2

€

m=o

— 6,5K|OQ(N/K)



Universality

= Easy to see why random matrices are universal
with respect to sparsity basis

= Resample your points in new basis — JL provides
guarantee for arbitrary set of points
o Gaussian

o Bernoulli
o Others...
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Summary

Better understanding of the relevant geometry
o provides simple proofs of key CS / n-width results

New conditions on what it takes to be a good CS
matrix
o concentration of measure around the mean

New signal models
o manifolds

Natural setting for studying information scalability
o detection

o estimation

o learning
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Manifold Compressive Sensing

= Locally Euclidean topological space

= Typically for signal processing
o nonlinear K-dimensional “surface” in signal space RV
o potentially very low dimensional signal model

= Examples (all nonlinear)

o chirps
o modulation schemes
o image articulations

VI

—
——




‘ Stable Manifold Embedding

Stability [Wakin, Baraniuk]

(=€) ||z —yl|lr <||Px — Pyll, < (14€) ||z — ¥l

Number of measurements required

M = C1K1og(CoN)



‘ Example: Linear Chirps

W o

original initial guess initial error

N = 256
K = 2 (start & end frequencies)

M =5: 55% success
M = 30: 99% success



Manifold Learning

= Manifold learning algorithms X
for sampled data in RN W\/\WWW\MNV ° RY

o ISOMAP, LLE, HLLE, etc. g

s Stable embedding preserves
key properties in RM WMWWWW
o ambient and geodesic distances

o dimension and volume of the manifold

o path lengths and curvature

o topology, local neighborhoods, and angles

o etc...

= Can we learn these properties from projections in RM?
o savings in computation, storage, acquisition costs



Example: Manifold Learning

ISOMAP

{4“5 :”*ﬂ..,_
i
R4096 ...

Laplacian
Eigenmaps




Randomness in CS
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Detection — Matched Filter

= Testing for presence of a known signal s

= Sufficient statistic for detecting s:

t = (x,s)



Compressive Matched Filter

H{ | x=s+n
= Now suppose we have CS measurements y = dx

o when P is an orthoprojector, ®n remains white noise

o new sufficient statistic is simply the
compressive matched filter (smashed filter?)

t' = (y, Ps)



CMF - Performance

= ROC curve for Neyman-Pearson detector:

Pp(@) =@ (@ i) - 12212)

o)

« From JL lemma, for random orthoprojector @

Sallo ~ 2
[sla % /52 sl
Po(0) ~ @ (Ql(a) -\ 50'2)

= Thus




CMF - Performance

Effect of M on F’D

_ — SNR =10dB
0.2 mrmee SNR = 15dB |1
.......... SNR — EDdB
""" SNR = 25dB
D 1 1 1 1
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M/N



Generalization — Classification

= More generally, suppose we want to classify
between several possible signals

RN
9 ¢
. 3 Ye
S1 . CD Cb.s
. —_— 1
82
t1 = |ly — Ps1llp
1= 1Y 51112 by the JL Lemma
tro = |ly — Psallo >~ these distances
are preserved
t3 = ||y — Ps3 >




CMF as an Estimator

= How well does the compressive
estimate the output of the true

With probability at least 1 —§

‘(CDZC,CDS> . <(L‘,S>| < K ||£U||2||S||2

N AY)) \v/jigr

where

6 05}
Ky = 2\/12 l0g (5) 0'4_

[Alon, Gibbons, Matias, Szegedy; 0.2
Davenport, Baraniuk, Wakin] 0.1

matched filter
matched filter?

Effect of M on Estimation Error

10
x 10°
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Random matrices work for CS for the same reason
that they work for the JL lemma

Another way to characterize "good” CS matrices

Allows us to extend CS to new signal models
o manifold/parametric models

Allows us to extend CS to new settings
o detection

o classification/learning

o estimation



