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Sensor explosion 



Data deluge 



Digital revolution 

“If we sample a signal at twice its highest    

frequency, then we can recover it exactly.” 

 Whittaker-Nyquist-Kotelnikov-Shannon  



Data with high-frequency content is often not intrinsically 

high-dimensional 

 

 

 

 

 

Signals often obey low-dimensional models 

– sparsity 

– manifolds 

– low-rank matrices 
 

The “intrinsic dimension”     can be much less than  

the “ambient dimension” 

Dimensionality reduction 



Sample-then-compress paradigm 

• Standard paradigm for digital data acquisition 

– sample data   (ADC, digital camera, …)  

– compress data   (signal-dependent, nonlinear) 

 

 

 

 

 

 

 

 
 

• Sample-and-compress paradigm is wasteful  

– samples cost $$$ and/or time 

 

JPEG 

MPEG 

… 

sample compress transmit/store 

receive decompress 



Exploiting low-dimensional structure 

We would like to operate at the intrinsic dimension at all 

stages of the information-processing pipeline  

How can we exploit low-dimensional structure  

in the design of signal processing algorithms? 

process 

detect 

classify 

estimate 

filter 

recover 

acquire 



Compressive sensing 

Replace samples with general linear measurements  

 

 

 

 

 

 

 

 

 
 

measurements 

-sparse 

sampled 

signal 

[Donoho; Candès, Romberg, Tao - 2004] 



Sparsity 

    nonzero 
entries 

pixels 
large 

wavelet 

coefficients 



Sparsity 

    nonzero 
entries 

samples 
large 

Fourier 

coefficients 



Sparsity 

    nonzero 
entries 



Core theoretical challenges 

• How should we design the matrix     so that      is as small 

as possible? 
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Core theoretical challenges 

• How should we design the matrix     so that      is as small 
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• How can we recover    from the measurements    ? 



Outline 

• Sensing matrices and real-world compressive sensors 

– (structured) randomness 

– tomography, cameras, ADCs, … 

 

• Sparse signal recovery 

– convex optimization 

– greedy algorithms 

 

• Beyond sparsity 

– parametric models, manifolds, low-rank matrices, … 

 



Sensing Matrix 

Design 



Analog sensing is matrix multiplication 

If         is bandlimited, 

 

Nyquist-rate  

samples  

of 

vector 



Restricted Isometry Property (RIP) 



RIP and stability 

If we want to guarantee that 

 

 

then we must have  



Sub-Gaussian distributions 

• As a first example of a matrix     which satisfies the RIP, we 

will consider random constructions 

 

• Sub-Gaussian random variable: 

– Gaussian 

– Bernoulli/Rademacher (     )  

– any bounded distribution 

 

• For any   , if the entries of     are sub-Gaussian, then there 

exists a    such that with high probability 

 

 



Johnson-Lindenstrauss Lemma 

• Stable projection of a discrete set of     points 

 

 

 

 

 

 

• Pick     at random using a sub-Gaussian distribution 
 

• For any fixed   ,            concentrates around 

with (exponentially) high probability    
 

• We preserve the length of all            difference vectors 

simultaneously if                        

 

 



JL Lemma meets RIP 

 [Baraniuk, Davenport, DeVore, Wakin –2008] 



RIP matrix: Option 1 

• Choose a random matrix 

– fill out the entries of     with i.i.d. samples from a sub-

Gaussian distribution 

– project onto a “random subspace” 

 

 

 

 

 [Baraniuk, Davenport, DeVore, Wakin –2008] 



• Random Fourier submatrix 

 

RIP matrix: Option 2 

 [Candès and Tao - 2006] 



RIP matrix: Option 3 

“Fast JL Transform” 

• By first multiplying by random signs, a random Fourier 

submatrix can be used for efficient JL embeddings 

 

• If you multiply the columns of any RIP matrix by random 

signs, you get a JL embedding! 

 [Ailon and Chazelle – 2007; Krahmer and Ward - 2010 ] 



Hallmarks of random measurements 

Stable 

With high probability,    will preserve information, be robust to 

noise 
 

Universal (Options 1 and 3) 

      will work with any fixed orthonormal basis (w.h.p.) 

 

 

 

 

 

Democratic 

Each measurement has “equal weight” 



Compressive Sensors 

in Practice 



Tomography in the abstract 



Fourier-domain interpretation 

• Each projection gives us a “slice” of the 2D Fourier 

transform of the original image 
 

• Similar ideas in MRI 
 

• Traditional solution: Collect lots (and lots) of slices 



Why CS? 



CS for MRI reconstruction 

Min TV, 34.23dB [CR] 

Backproj., 29.00dB 256x256 MRA 

Fourier sampling 

80 lines (M~0.28N) 



Pediatric MRI 

Traditional MRI CS MRI 

 

4-8 x faster! 

[Vasanawala, Alley, Hargreaves, Barth, Pauly, Lustig - 2010] 



“Single-Pixel Camera” 

© MIT Tech Review 

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008] 



TI Digital Micromirror Device 



Single-Pixel Camera 

pixels 



Compressive ADCs 

DARPA “Analog-to-information” program:  

Build high-rate ADC for signals with sparse spectra 

 

 

500 MHz 



DARPA “Analog-to-information” program:  

Build high-rate ADC for signals with sparse spectra 

 

 

Compressive ADCs 

[Le – 2005; Walden – 2008] 



Compressive ADC approaches 

• Random sampling 

– long history of related ideas/techniques 

– random sampling for Fourier-sparse data equivalent to 

obtaining random Fourier coefficients for sparse data 

 

• Random demodulation 

– CDMA-like spreading followed by low-rate uniform sampling 

– modulated wideband converter 

– compressive multiplexor, polyphase random demodulator 

 

• Both approaches are specifically tailored for Fourier-sparse 

signals 



Random demodulator 

 

 

[Tropp, Laska, Duarte, Romberg, Baraniuk – 2010] 



Random demodulator 

 

 

[Tropp, Laska, Duarte, Romberg, Baraniuk – 2010] 



Empirical results 

Signal Bandwidth Hz (N) Number of Nonzero Components (S) 

[Tropp, Laska, Duarte, Romberg, Baraniuk – 2010] 



Compressive sensors wrap-up 

• CS is built on a theory of random measurements 

– Gaussian, Bernoulli, random Fourier, fast JLT 

– stable, universal, democratic 

 

• Randomness can often be built into real-world sensors 

– tomography 

– cameras 

– compressive ADCs 

– microscopy 

– astronomy 

– sensor networks 

– DNA microarrays and biosensing 

– radar 

–  … 



Sparse Signal Recovery 



Sparse signal recovery 

support 
values 

• Optimization /    -minimization 
 

• Greedy algorithms 

– matching pursuit 

– orthogonal matching pursuit (OMP) 

– Stagewise OMP (StOMP), regularized OMP (ROMP) 

– CoSaMP, Subspace Pursuit, IHT, … 



Sparse recovery: Noiseless case 

•    -minimization: 

 

 

•    -minimization: 

 

 

 

• If     satisfies the RIP, then      and     are equivalent!  

 

  given              

find   

nonconvex 
NP-Hard 

convex 
linear program 

[Donoho; Candès, Romberg, Tao - 2004] 



Why     -minimization works 



Sparse recovery: Noisy case 

Suppose we observe                  , where    

 

 

 

 

 

 

 

 

 

Similar approaches can handle Gaussian noise added to either 

the signal or the measurements  



Sparse recovery: Non-sparse signals 

In practice,    may not be exactly    -sparse 



Greedy algorithms: Key idea 

If we can determine                   , then the problem becomes 

over-determined.  

 

 

 

 

 

 

In the absence of noise,   



Matching Pursuit 

Select one index at a time using a simple proxy for  

 

 

 

 

 

 

If     satisfies the RIP of order              , then 

 

 

Set            and 



Matching Pursuit 

Obtain initial estimate of 

 

 

 
 

Update proxy and iterate 



Iterative Hard Thresholding (IHT) 

[Blumensath and Davies – 2008] 

proxy vector 

step size 

hard thresholding 

RIP guarantees convergence and accurate/stable recovery 



Orthogonal Matching Pursuit 

Replace                                     with 

 

 

where     is the set of indices selected up to iteration  

Projection onto 



Orthogonal Matching Pursuit 

Suppose    is    -sparse and 
If    satisfies the RIP of order          with 
constant                 , then the     identified at 
each iteration will be a nonzero entry of   .   

Exact recovery after    iterations 
 

[Davenport and Wakin – 2010] 



Extensions of OMP 

• StOMP, ROMP 

– select many indices in each iteration 

– picking indices for which      is “comparable” leads to 

increased stability and robustness 

 

• CoSaMP, Subspace Pursuit, … 

– allow indices to be discarded 

– strongest guarantees, comparable to    -minimization 

[Needell and Tropp – 2010] 



Beyond Sparsity 



Beyond sparsity 

• Not all signal models fit neatly into the “sparse” setting 

 

• The concept of “dimension” has many incarnations 

– “degrees of freedom” 

– constraints 

– parameterizations 

– signal families 

 

• How can we exploit these low-dimensional models? 

 

• I will focus primarily on just a few of these 

– structured sparsity, finite-rate-of-innovation, manifolds,  

low-rank matrices 



Structured sparsity 

• Sparse signal model captures  

simplistic primary structure 
 

• Modern compression/processing algorithms capture  

richer secondary coefficient structure 

 

wavelets: 

natural images 

Gabor atoms: 

chirps/tones 

pixels: 

background subtracted 

images 



Sparse signals 

Traditional sparse models allow all possible   

   -dimensional subspaces 

 



Wavelets and tree-sparse signals 

Model:     nonzero coefficients lie on a connected tree 

 [Baraniuk, Cevher, Duarte, Hegde – 2010] 



Other useful models 

• Clustered coefficients 

– tree sparse 

– block sparse 

– Ising models 

 

 

 

• Dispersed coefficients 

– spike trains 

– pulse trains 

 

 [Baraniuk, Cevher, Duarte, Hegde – 2010] 



Finite rate of innovation 

Continuous-time notion of sparsity: “rate of innovation” 
 

Examples: 

 

 

 

 

 

 

Rate of innovation:  

Expected number of innovations per second 

 [Vetterli, Marziliano, Blu – 2002; Dragotti, Vetterli, Blu - 2007] 

Innovations 



Sampling signals with FROI 

We would like to obtain samples of the form 

 

 

where we sample at the rate of innovation. 

 

Requires careful construction of sampling kernel        . 

 

Drawbacks: 

– need to repeat process for each signal model 

– stability 

 [Vetterli, Marziliano, Blu – 2002; Dragotti, Vetterli, Blu - 2007] 



Manifolds 

•    -dimensional parameter           

captures the degrees of freedom 

of signal 
 

• Signal class forms an     

   -dimensional manifold 

– rotations, translations 

– robot configuration spaces 

– signal with unknown translation 

– sinusoid of unknown frequency 

– faces 

– handwritten digits 

– speech 

– … 



Random projections 

• For sparse signals, random projections preserve geometry 

 

 

 

 

 

 

 

 

 

• What about manifolds? 



Stable manifold embedding 

Theorem 

Let                 be a compact    -dimensional  

manifold with 

– condition number        (curvature, self-avoiding) 

– volume 
 

Let     be a random             projection with 

 

 

Then with high probability, and any  

 [Baraniuk and Wakin – 2009] 



Compressive sensing with manifolds 

? 

• Same sensing protocols/devices 

• Different reconstruction models 

• Measurement rate depends on manifold dimension 

• Stable embedding guarantees robust recovery 



Low-rank matrices 

Singular value decomposition: 

degrees of freedom 



Matrix completion 

• Collaborative filtering (“Netflix problem”) 

• How many samples will we need? 

 
 

• Coupon collector problem 



Application: Collaborative filtering 

The “Netflix Problem” 

 

 

 

Rank 1 model: 

 

 

 

Rank 2 model: 

how much user    likes movie    i j

how much user    likes romantic movies  i

amount of romance in movie    j

how much user    likes zombie movies  i

amount of zombies in movie    j





Low-rank matrix recovery 

Given: 

• an            matrix     of rank  

• linear measurements 

 

How can we recover     ? 

 

 

 

 

 

Can we replace this with something computationally feasible? 



Nuclear norm minimization 

Convex relaxation! 

 

Replace               with                         

 

The “nuclear norm” is just the    -norm of the vector of 

singular values 

 

 

 

 

 [Candès, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, …] 



Nuclear norm minimization 

Convex relaxation! 

 

Replace               with                         

 

The “nuclear norm” is just the    -norm of the vector of 

singular values 

 

 

 

 

 [Candès, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, …] 



Robust PCA 

In the presence of outliers, our data matrix     is no longer 

low-rank because some of the entries have been corrupted 

low-rank corruptions 



How to perform separation? 

 

 

 

 



Application: Removing face illumination 

[Candès et al., 2009] 



Application: Background subtraction 

[Candès et al., 2009] 



Conclusions 



Conclusions 

• The theory of compressive sensing allows for new sensor 

designs, but requires new techniques for signal recovery 
  

• “Conciseness” has many incarnations 

– structured sparsity 

– finite rate of innovation, manifold, parametric models 

– low-rank matrices 

 

• We can still use compressive sensing even when signal 

recovery is not our goal 
 

• The theory/techniques from compressive sensing can be 

tremendously useful in a variety of other contexts 


