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Sensor explosion
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Digital revolution

-

“If we sample a signal at twice its highest
frequency, then we can recover it exactly.”

Whittaker-Nyquist-Kotelnikov-Shannon )




Dimensionality reduction

Data with high-frequency content is often not intrinsically
high-dimensional

Signals often obey low-dimensional models
- sparsity
- manifolds
- low-rank matrices

The “intrinsic dimension” S can be much less than
the “ambient dimension” NV



Sample-then-compress paradigm

« Standard paradigm for digital data acquisition
- sample data (ADC, digital camera, ...)
- compress data (signal-dependent, nonlinear)

N > S

|.W x 4'[ sample]—-[ compress ]—-[ transmlt/store

JPEG
MPEG

S N
receive ]—'[ decompress ]—' T e
o Sample-and-compress paradigm is wasteful
- samples cost $SS and/or time




Exploiting low-dimensional structure

How can we exploit low-dimensional structure
in the design of signal processing algorithms?

We would like to operate at the intrinsic dimension at all
stages of the information-processing pipeline
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Compressive sensing

Replace samples with general linear measurements

Y d x
M x 1 N x 1
measurements — sampled
signal
M x N S-sparse

[Donoho; Candes, Romberg, Tao - 2004]
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Core theoretical challenges

e How should we design the matrix ® so that M is as small
as possible?
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Core theoretical challenges

e How should we design the matrix ® so that M is as small
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Core theoretical challenges

e How should we design the matrix ® so that M is as small
as possible?
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e« How can we recover x from the measurements vy ?



Outline

e Sensing matrices and real-world compressive sensors
- (structured) randomness
- tomography, cameras, ADCs, ...

e Sparse signal recovery
- convex optimization
- greedy algorithms

e Beyond sparsity
- parametric models, manifolds, low-rank matrices, ...



Sensing Matrix
Design




Analog sensing is matrix multiplication

If x(t) is bandlimited,
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Restricted Isometry Property (RIP)
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RIP and stability
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Sub-Gaussian distributions

As a first example of a matrix ¢ which satisfies the RIP, we
will consider random constructions

Sub-Gaussian random variable: E (e**) < ec b /2
- Gaussian

- Bernoulli/Rademacher (x1)

- any bounded distribution

For any z, if the entries of ® are sub-Gaussian, then there
exists a o such that with high probability

(1 =)llzlz < @2z < (1+9)lzl3



Johnson-Lindenstrauss Lemma

« Stable projection of a discrete set of P points
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o Pick ® at random using a sub-Gaussian distribution

o For any fixed z, ||®z||2 concentrates around ||z||2
with (exponentially) high probability

 We preserve the length of all O(PQ) difference vectors
simultaneously if M = O(log P?) = O(log P).



JL Lemma meets RIP

<146  Jzlo <28

P=0((N/S)°) wmp M =O(Slog(N/S))

[Baraniuk, Davenport, DeVore, Wakin -2008]



RIP matrix: Option 1

e Choose a random matrix

- fill out the entries of ® with i.i.d. samples from a sub-
Gaussian distribution

- project onto a “random subspace”

M = O(Slog(N/S)) < N

[Baraniuk, Davenport, DeVore, Wakin -2008]



RIP matrix: Option 2

e Random Fourier submatrix

M = O(SlogP(N/S)) < N

[Candes and Tao - 2006]



RIP matrix: Option 3
“Fast JL Transform”

« By first multiplying by random signs, a random Fourier
submatrix can be used for efficient JL embeddings

e If you multiply the columns of any RIP matrix by random
signs, you get a JL embedding!

[Ailon and Chazelle - 2007; Krahmer and Ward - 2010 ]



Hallmarks of random measurements

Stable

With high probability, ® will preserve information, be robust to
noise

Universal (Options 1 and 3)

® will work with any fixed orthonormal basis (w.
Y

Democratic
Each measurement has “equal weight”
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Compressive Sensors
in Practice
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Tomography in the abstract

r =xCOS0 + ysino
po(r1)
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Fourier-domain interpretation

e Each projection gives us a “slice” of the 2D Fourier
transform of the original image

e Similar ideas in MRI

e Traditional solution: Collect lots (and lots) of slices



Why CS?
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CS for MRI reconstruction
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Pediatric MRI
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[Vasanawala, Alley, Hargreaves, Barth, Pauly, Lustig - 2010]



“Single-Pixel Camera”

2] = //:U(t:tg)dtldtg

pixel n

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008]
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Single-Pixel Camera

256 x 384 pixels
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Compressive ADCs

DARPA “Analog-to-information” program:
Build high-rate ADC for signals with sparse spectra

X(f) 4

r—
500 MHz f



Compressive ADCs

DARPA “Analog-to-information” program:
Build high-rate ADC for signals with sparse spectra
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Compressive ADC approaches

« Random sampling
- long history of related ideas/techniques

- random sampling for Fourier-sparse data equivalent to
obtaining random Fourier coefficients for sparse data

« Random demodulation
- CDMA-like spreading followed by low-rate uniform sampling
- modulated wideband converter
- compressive multiplexor, polyphase random demodulator

e Both approaches are specifically tailored for Fourier-sparse
signals



Random demodulator

/ Integrator Sample-and-Hold Quantizer \
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[Tropp, Laska, Duarte, Romberg, Baraniuk - 2010]
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Empirical results
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Sampling Rate Hz (M)
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M ~ 1.75log(N/S + 1)

[Tropp, Laska, Duarte, Romberg, Baraniuk - 2010]



Compressive sensors wrap-up

e CSis built on a theory of random measurements
- Gaussian, Bernoulli, random Fourier, fast JLT
- stable, universal, democratic

 Randomness can often be built into real-world sensors
- tomography
- cameras
- compressive ADCs
- microscopy
- astronomy
- sensor networks
- DNA microarrays and biosensing
- radar
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Sparse Signal Recovery
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Sparse signal recovery

Y ()

support
values

e Optimization / /1 -minimization

e Greedy algorithms
- matching pursuit
- orthogonal matching pursuit (OMP)
- Stagewise OMP (StOMP), regularized OMP (ROMP)
- CoSaMP, Subspace Pursuit, IHT, ...



Sparse recovery: Noiseless case

r “
giveny = ®x
find
\ Y
e /p-minimization: ¥ = argmin ||x||o « honconvex
reRN NP-Hard
s.t. y=ox
e ¢,-minimization: 7 = argmin ||z||; convex
zERY linear program
s.t. y=ox

o If ¢ satisfies the RIP, then ¢; and ¢; are equivalent!

[Donoho; Candes, Romberg, Tao - 2004]



Why £;-minimization works

T = argmin ||x||;
rERN

s.t. y=>ox

{2/ : @2’ =y}



Sparse recovery: Noisy case
Suppose we observe y = ®x + ¢, where |le]|2 < €

T = arg min ||z||;
rERN

s.t. |y — Px|ls <e

[ |7 — z||2 < Coe ]

Similar approaches can handle Gaussian noise added to either
the signal or the measurements




Sparse recovery: Non-sparse signals
In practice, x may not be exactly S-sparse

T = arg min ||z||;
rERN

s.t. |y — Px|ls <e

4 )
15 — 2ls < Coe + ¢y 12 = Zslh
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Greedy algorithms: Key idea

If we can determine A = supp(x), then the problem becomes
over-determined.
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Matching Pursuit

Select one index at a time using a simple proxy for x

p= oy

[ j* = arg max |p;| J
J

If & satisfies the RIP of order ||[u + v||g, then

[{Qu, Pv) — (u, v)| < dl[ull2]|v]2

Set u=x and v = ¢;
pj — x5 < 0lz[2

CECTEIIITIITRCD &

.
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Matching Pursuit

Obtain initial estimate of «

[ ) =pj-e;- ]

Update proxy and iterate

-
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p=oT(y — dz~Y)

j° = argmax |p;|
J

20 — =1 + p;

- T




Iterative Hard Thresholding (IHT)

step size

|

zU) = Hg (x(j—l) 4 M:I)T (y _ q)x(j—l)))

[ Y

hard thresholding proxy vector

RIP guarantees convergence and accurate/stable recovery

[Blumensath and Davies - 2008]



Orthogonal Matching Pursuit

Replace z\/) = 20~V + pj=e;= with

2 = argmin ||y — ®pz|o

where A is the set of indices selected up to iteration

[ j* = arg max |(Py, P®,)] ]

P=1-,0%
D\ —
Projection onto R(®,)

PP,=0 wmp Pdr—=Pdr,.



Orthogonal Matching Pursuit

Suppose x is S-sparse andy = ®ux. A
If ® satisfies the RIP of order S + 1 with
constant § < 1/3+/S, then the j* identified at
each iteration will be a nonzero entry of z.

- /

mm) Exact recovery after .S iterations

[Davenport and Wakin - 2010]



Extensions of OMP

o StOMP, ROMP

- select many indices in each iteration

- picking indices for which p; is “comparable” leads to
increased stability and robustness

e CoSaMP, Subspace Pursuit, ...
- allow indices to be discarded
- strongest guarantees, comparable to ¢1-minimization

4 | 1 | )
|z — 20+, < 5llz = tDlls + Cllef2

|z — 27|l < 27 |lz]l2 + 2C]je]l2
N\ _/

[Needell and Tropp - 2010]




Beyond Sparsity




Beyond sparsity
Not all signal models fit neatly into the “sparse” setting

The concept of “dimension” has many incarnations
- “degrees of freedom”

- constraints

- parameterizations

- signal families

How can we exploit these low-dimensional models?

| will focus primarily on just a few of these

- structured sparsity, finite-rate-of-innovation, manifolds,
low-rank matrices



Structured sparsity

e Sparse signal model captures
simplistic primary structure

e Modern compression/processing algorithms capture
richer secondary coefficient structure

pixels:
background subtracted
images

wavelets: Gabor atoms:
natural images chirps/tones



Sparse signals

Traditional sparse models allow all possible
S -dimensional subspaces




Wavelets and tree-sparse signals

Model: S nonzero coefficients lie on a connected tree

- ] 4
}7 6
8
0] 200 400 50 100 150 200 250 0 200 400 50 100 150 200 250

[Baraniuk, Cevher, Duarte, Hegde - 2010]




Other useful models

e Clustered coefficients
- tree sparse # -
- block sparse

- Ising models

e Dispersed coefficients
- spike trains
- pulse trains

-

[Baraniuk, Cevher, Duarte, Hegde - 2010]



Finite rate of innovation

Continuous-time notion of sparsity: “rate of innovation”

Examples:

Innovations w
Rate of innovation:

Expected number of innovations per second

,r

[Vetterli, Marziliano, Blu - 2002; Dragotti, Vetterli, Blu - 2007]



Sampling signals with FROI

We would like to obtain samples of the form
ylm] = ¢(t) * 2(t)li=mt, = (p(MTs — 1), 2(t))

where we sample at the rate of innovation.

Requires careful construction of sampling kernel ¢(t).

Drawbacks:

- need to repeat process for each signhal model
- stability

[Vetterli, Marziliano, Blu - 2002; Dragotti, Vetterli, Blu - 2007]



Manifolds

e S-dimensional parameter 6 € © RN
captures the degrees of freedom ,é)
of signal

e Signal class forms an
S -dimensional manifold

- rotations, translations
- robot configuration spaces

- signal with unknown translation
- sinusoid of unknown frequency
- faces

- handwritten digits
- speech




Random projections

« For sparse signals, random projections preserve geometry

« What about manifolds?



Stable manifold embedding

Theorem
Let M C R" be a compact S -dimensional RY

manifold with / L1
- condition number 1/7 (curvature, self-avoiding)
- volume V

Let ® be a random M x N projection with
M = O(Slog(NV/T))

RM
Then with high probability, and any x;,x2 € M .

(I)CCQ
| By — Bas 2 -~

<1496 Oz,

1 -0 <
=l — zol3

[Baraniuk and Wakin - 2009]



Compressive sensing with manifolds

RN R
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Same sensing protocols/devices

Different reconstruction models

Measurement rate depends on manifold dimension
Stable embedding guarantees robust recovery



Low-rank matrices

Singular value decomposition:

X =UXV" — ~ NR <« N*
degrees of freedom



Matrix completion

e e i
£

H

e Collaborative filtering (“Netflix problem)
« How many samples will we need?

M >CNR

e Coupon collector problem
M > Nlog N



Application: Collaborative filtering

The “Netflix Problem”

[Xijj — how much user 2 likes movie ]

Rank 1 model: u; = how much user ? likes romantic movies
v; = amount of romance in movie J
Xij = Uiv;
Rank 2 model: w; = how much user ¢ likes zombie movies

x; = amount of zombies in movie J

Xij = wivj + w;x;
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Low-rank matrix recovery

Given:

« an N x N matrix X of rank R
 linear measurements y = A(X)

How can we recover X ?

(" )

X = arginf rank(X)
X:A(X)=y

\_ J

Can we replace this with something computationally feasible?



Nuclear norm minimization
Convex relaxation!
N
Replace rank(X) with | X|[l. =) |0
j=1

The “nuclear norm” is just the ¢,-norm of the vector of
singular values

(" )

X = arginf rank(X)
X:A(X)=y

\_ J

[Candes, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, ...]



Nuclear norm minimization
Convex relaxation!
N
Replace rank(X) with | X|[l. =) |0
j=1

The “nuclear norm” is just the ¢,-norm of the vector of
singular values

4 \
X

arginf || X«
X:A(X)=y

M = O(NRlogN)

[Candes, Fazel, Keshavan, Li, Ma, Montanari, Oh, Parrilo, Plan, Recht, Tao, Wright, ...]



Robust PCA

In the presence of outliers, our data matrix X is no longer
low-rank because some of the entries have been corrupted

X= L + S

low-rank corruptions



How to perform separation?

rEiSn rank(L) 4+ \||S]|o

s.t. L+S=X

!

min L. + A[S|:

s.t. L+S=X



Application: Removing face illumination

[Candes et al., 2009]



Application: Background subtraction

[Candes et al., 2009]



Conclusions




Conclusions

The theory of compressive sensing allows for new sensor
designs, but requires new techniques for signal recovery

“Conciseness” has many incarnations

- structured sparsity

- finite rate of innovation, manifold, parametric models
- low-rank matrices

We can still use compressive sensing even when signal
recovery is not our goal

The theory/techniques from compressive sensing can be
tremendously useful in a variety of other contexts



