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Manifold models for classification

e Manifold models aid in overcoming the “curse of dimensionality”
by providing a low-dimensional model for high-dimensional data

Manifold models

Many high-dimensional signhal ensembles possess
intrinsic low-dimensional geometric structure
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Matched filters and manifolds

The matched filter can be viewed as a “"hearest
manifold” classifier
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Two stage approach:
e find ML estimate of parameter for each manifold
e classify according to which manifold is closest

Topology-aware classification

e Number of projections required is linear in the intrinsic
dimension K and only logarithmic in the ambient dimension N

Classification using multiscale
manifold navigation

Manifolds generated by images with sharp edges are
nowhere differentiable

« parameter estimation for such manifolds
becomes unstable

« exploit the multiscale structure of such manifolds
using Newton’s method and nested smoothing
kernels

e model aware classification

Classification using manifold learning

If we do not explicitly know the manifolds, we must
learn the manifolds from training data

 training data is often coarsely sampled

« exploit manifold structure in testing data in
addition to training data

e model blind classification

The random projection method

Compute random linear measurements of high-
dimensional data
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Advantages and applications

e Bounds are pessimistic, difficult to compute explicitly

Experiments

Multiscale manifold navigation

e 3 image classes imaged using single-pixel camera
erotations 29, 4°, ..., 360°
ebinary random measurements
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o5 regularization kernels

e Estimate rotation using
multiscale projections

e Identify most likely class using
nearest-neighbor test
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Classification with manifold learning

e 2 image classes
edisc or square of fixed radius
eunknown shift
erandom measurements

e Training data coarsely sampled from the two manifolds

e Append a new batch of data to each of the two training data
sets, run ISOMAP, and classify according to which yields
lower residual variance

Learning vs Majority Voting (N = 4096, M = 600)
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