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Sparse Signals

Basis
transformation

M

DCT, wavelets

Sparse: K < N nonzero coefficients

Compressible: K < N important coefficients



Unions of Subspaces

e Sparse sighal # subspaces
— subspace model: linear
— sparse model: nonlinear
— sparse model = union of @) subspaces

Y =z zllo < K} (k) :={¥z: ||lzflo < K}
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Sparsity vs Manifolds

e Does the set of sparse signals form a

manifold?
R R
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e Union of multiple manifolds

e Same lessons apply — we can still exploit
the low-dimensional structure



Geodesic Paths on a Manifold

e How is manifold structure ¢:00,1] = X

exploited in practice?

e Replace Euclidean distance
with geodesic distance

O (z,y) = 14(t) : ¢(0) = z,¢(1) =y, o(t) € X}

Geodesic path Geodesic distance

[’7— arg inf L<¢>] {d;f(a:,y)—z;(v)}




Sparse Geodesic Paths

v= arginf L(¢) A
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e Assumptions

-V =]
_ supp(z) N supp(y) :@
~ [supp(z)| = [supp(y)| =



Necessary Conditions

Three cases:
e i ¢ supp(x)Usupp(y) mp 7i(t) =0 forall ¢ € [0,1]

e i Csupp(x) »
i (1
3 t; such that 7

o i csupp(y) mp

3 r; such that ~i (t)

v;(t) =0 for all t € [0, r] /




Support Matching

e Given a candidate(t), we can define a
matching M between the entries of x and y

]

e We allow (i,j) e M if and only if t; <r;



Geodesic “"Unfolding”
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Geodesic “"Unfolding”
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Geodesic “"Unfolding”

(i1,J1) € M
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e Repeating for every (i, i) € M, we can
map any candidate geodesic 7(t) into a
path in R from —|v:(0)| to |vs(1)



Sketch of Derivation

. Any potential geodesic path is compatible
with at least one matching

. Given any potential geodesic path, its
length is equal to the length of the
corresponding “unfolded” path

. Given any matching, the shortest path in
the “"unfolded” space is a straight line

. This line defines a valid geodesic path



Matching Dependent Geodesic

e Given a matching M, the shortest path
compatible with this matching has length
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e Finding the shortest path is equivalent to
finding the best matching



Optimal Matching

o We want to minimize
K

Z @i | + ‘yj’k H:L‘ — y“% + 2 Z I':C%Hyjkl
k=1 k=1

o Set |z;,| <z <o <y |

’yjl > |yj2| > 2 ijK|
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Observations

o Attempts to equalize the value of each
term in the sum

K
Ay (z,y) = \ |z — y”% + QZ |x%k||yjk|
k=1

e Assumez;, =C, and y; = C,
K

>l lyi] = KC:Cy = |l]2llyll:
k=1

[ 17—yl < ds, (5,9) < ]2 + [l ]




Example




What is it good for?

Incorporating prior knowledge

— use geodesic distance as input to kNN, SVM, or
other kernel-based learning algorithm

Semi-supervised learning

— combine with dictionary learning algorithms
such as K-SVD [Aharon 2006]

Signal morphing/interpolation

“Absolutely nothin’!"? [Starr 1970]



Extensions

e Structured sparsity

e Compressible data
- truncate to enforce sparsity
— geodesic distance on ¢, and/or w{, balls



Conclusions

e For the simple sparse setting
— analytic formula available
— doesn’t differ much from Euclidean distance

e Important to incorporate additional
structure/models
— still possible to derive a formula?
— can it be computed efficiently?

e Promising applications?
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