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Overview

Use support vector machines to estimate
minimum volume sets (MV-sets)

e anomaly detection

e Maximize the "margin” ROC analysis
e clustering . n
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Key idea: reduce MV-set estimation to
Neyman-Pearson classification s.t. ((w,x;) +b)y; > p—§

o treat MV-set estimation (one-class problem)
as a two-class problem like classification

e draw second class from uniform distribution

—  Support Vector Machines

Method for learning classifiers from training data

e Use “kernel-trick”

Minimum Volume Sets

Algorithms for MV/level set estimation of NP
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Measuring Performance

classification are typically analyzed using

We want to operate at a specific point of the

ROC curve
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Results: MV-set Estimation

—— Neyman-Pearson SVMs
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Neyman-Pearson

Classification

Given
e Probability measures @+ and @—

e Target power «

— Uniform Data: Thinning

In high dimensions we must confront the
“curse of dimensionality”

One option is thinning the data to ensure a large
distance between any pair of points

e results in an approximate “packing set”

Test validity of uniform prior

Compare
e MV-set (one C

o NP-classifier (

Results: Ahomaly Detection
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Pearson Classification

Any technique for estimating an NP classifier
can be adapted to estimate an MV-set

Set Q-=1-P What if our data lies on a manifold? sets using Neyman-Pearson SVMs
Ry =p e adapt to this structure e .
a=1-7 The procedure used for generating “uniform

Then, if f, is the optimal NP classifier,

¢h={z: f1=-1)

Sampling

Thinning does not directly overcome the
“vastness of space” in high dimensions

e do not waste samples

Minimum volume sets are an effective way to
approach anomaly detection

We can accurately estimate minimum volume

samples can significantly impact performance

Our approach tends to perform

e better than the one-class SVM

; ca if...;;.:; o often nearly as well the NP classifier trained
Challenge: we only have samples from P ) C e atae - using both classes
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