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Neyman-Pearson SVMs

Consider cost-sensitive SVM

• Introduce class-specific weights

• Adjust weights to achieve desired error rates

Relies on accurate error estimation 

• cross-validation

Minimum Volume Sets

Given

• Probability measure

• Reference measure     (typically Lebesgue)

• Target mass

The minimum volume set is

Results: MV-set Estimation

Compare with 
one-class SVM

Modified LIBSVM
software

Highlights:

• manifold sampling 
performs best

• two-class methods 
more reliable

• impact of discrete 
data

Uniform Data: Thinning

In high dimensions we must confront the
“curse of dimensionality”

One option is thinning the data to ensure a large 
distance between any pair of points

• results in an approximate “packing set”

Neyman-Pearson 
Classification

Given

• Probability measures       and 

• Target power

Let

The Neyman-Pearson classifier is

Results: Anomaly Detection

Test validity of uniform prior

Compare

• MV-set (one class)

• NP-classifier (both classes)

Uniform Data: Manifold 
Sampling

Thinning does not directly overcome the 
“vastness of space” in high dimensions

What if our data lies on a manifold?

• adapt to this structure

• do not waste samples

Reduction to Neyman-
Pearson Classification

Any technique for estimating an NP classifier
can be adapted to estimate an MV-set

Set

Then, if       is the optimal NP classifier, 

Challenge: we only have samples from

we can sample from

Conclusions

Minimum volume sets are an effective way to 
approach anomaly detection

We can accurately estimate minimum volume 
sets using Neyman-Pearson SVMs

The procedure used for generating “uniform” 
samples can significantly impact performance

Our approach tends to perform 

• better than the one-class SVM

• often nearly as well the NP classifier trained 
using both classes 
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Support Vector Machines

Method for learning classifiers from training data

• Use “kernel-trick”

• Maximize the “margin”

Overview

Use support vector machines to estimate 
minimum volume sets (MV-sets)

• anomaly detection

• clustering

Key idea: reduce MV-set estimation to 
Neyman-Pearson classification

• treat MV-set estimation (one-class problem) 
as a two-class problem like classification

• draw second class from uniform distribution 

Measuring Performance

Algorithms for MV/level set estimation of NP
classification are typically analyzed using

ROC analysis

We want to operate at a specific point of the 
ROC curve

banana

OC-SVM 1.36

NP-IND 0.53

NP-THIN 0.47

NP-MAN 0.44

breast-cancer

OC-SVM 0.55

NP-IND 0.29

NP-THIN 1.75

NP-MAN 0.06

heart

OC-SVM 0.63

NP-IND 0.43

NP-THIN 1.26

NP-MAN 0.16

thyroid

OC-SVM 0.77

NP-IND 0.63

NP-THIN 0.79

NP-MAN 0.7

ringnorm

OC-SVM 0.11

NP-IND 0.17

NP-THIN 0.11

NP-MAN 0.06

banana
without 0.29

with 0.24

breast-cancer
without 0.83

with 0.99

heart
without 0.76

with 0.50

thyroid
without 0.44

with 0.22

ringnorm
without 0.015

with 0.021


