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Pressure is on Signal Processing

e Increasing pressure on signal/image
processing hardware and algs to support

higher rates / resolution

larger numbers of sensors]

greater number of modalities

deluge of data
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Sensing by Sampling




Data Acquisition and Representation

e Time: A/D converters, receivers, ...
e Space: cameras, imaging systems, ...
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e Foundation: Shannon sampling theorem
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Must sample at 2x highest frequency of

the signal (Nyquist rate)
- Y,




Sparsity

e Many signhals can be compressed in some
representation/basis (Fourier, wavelets, ...)

pixels
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Sensing by Sampling

e Standard paradigm for digital data acquisition
- sample data (ADC, digital camera, ...)
- compress data (signal-dependent, nonlinear)
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X 4{sa mpl e]—-[ compress ]—-[ transmit/store

sparse
wavelet
transform




-

&

Compressive Sensing
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From Samples to Measurements

e Shannon was a pessimist

— worst case bound for
any bandlimited signal

o Compressive sensing (CS) principle
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“sparse signals can be recovered from a small

\

number of nonadaptive linear measurements”

W,

— Integrates sensing, compression, processing

— based on new uncertainty principles and the
concept of incoherency between two bases



Incoherent Bases

e Spikes and sines (Fourier)
(Heisenberg)

V=]




Incoherent Bases

e Spikes and “random basis”

W=/ CD—randn(N N)
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Incoherent Bases

e Spikes and “random sequences” (codes)

V=1 b




Incoherent Bases




Compressive Sensing

[Candes, Romberg, Tao; Donoho]

e Signal x is K-sparse in basis/dictionary W
— WLOG assume sparse in space domain W = [

e Replace samples with /inear projections
y=&bzx
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Compressive Sensing

e Measure linear projections onto incoherent
basis where data is not sparse/compressible

o N
wg{project] ]:\g/[ {transmit/store]

one row

of P

: M N o @&
receive ]—-[reconstruct T X

e Reconstruct via nonlinear processing
(optimization)
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CS Signal Recovery

e Reconstruction/decoding:
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given y = Pz
find

~

\ ill-posed

W,
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inverse problem
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CS Signal Recovery

Reconstruction/decoding:

(ill-posed inverse problem)

L,: x=arg min ||z]2 — z = (®TP) 1Ty

y=>x

Fast, but wrong

Solution is
almost never sparse

T
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given y = Px

find x
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CS Signal Recovery

e Reconstruction/decoding:
(ill-posed inverse problem)

e L,: T =arg min ||z|»
y=>x

-

e L,: x = arg min ||z|o -
y=>bx

<
given y = Px

find x

W,

number of
nonzero
entries

e Correct, but s/ow (NP-Hard)

e M = K + 1 measurements suffice

[Bresler; Wakin]
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CS Signal Recovery

e Reconstruction/decoding: [ given y = dx )

(ill-posed inverse problem) find —

e L,: T =arg min ||z|»
y=>x

e L,: x = arg min ||z||o
y=>bx

o L,: r = arg min ||x||1 «— linear program
y=>dx

e Gives same answer as Ly, mild increase in M

[Candes et al, Donoho]

M = O(Klog(N/K) < N)
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CS Signal Recovery

I

20k random 7—term wavelet

projections approximation

E. J. Candés and J. Romberg, “Practical Signal Recovery from Random Projections,” 2004. 19



Why L, Doesn’t Work

z = arg min ||z
y=>x!

least squares,
minimum L, solution
is almost never sparse
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Why L, Works

r = arg min ||z||1
y=>o’
{QC, .
minimum L, solution '

= sparsest solution if
M = O(Klog(N/K)) < N
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Universality

e Random matrix is incoherent with any fixed
orthonormal basis (with high probability)
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(Compressive Sensing
in Action
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Single-Pixel CS Camera

random
pattern on L

DMD array 5 B Db
detector

image
\’ﬁ '@ reconstruction
-

A/D conversion

single photon ]

© MIT Tech Review

e New modalities
e Low cost
e Low power



TI Digital Micromirror Device (DMD)

A TEXAS INSTRUMENTS TECHNOLOGY

Spring Tip Substrate 25



First Image Acquisition

N

© MIT Tech Review

ideal 20X 50x
256x256 pixels sub-Nyquist sub-Nyquist




Second Image Acquisition

e Low-light scenario (photomultiplier tube)

e Used three color filters, separately
reconstruct each color range

10x sub-Nyquist

256x256 pixels
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World’s First Photograph

e 1826, Joseph Niepce
e Farm buildings and sky
e 8 hour exposure
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CS Hallmarks

CS changes the rules of data acquisition
— exploits a priori signal sparsity information

Universal

— same random projections / hardware can be used
for any compressible signal class (generic)

Democratic

— each measurement carries the same amount of
information

- simple encoding
- robust to measurement loss and quantization

Asymmetrical
— most processing at decoder
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_ Compressive Sensing

Distributed
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Sensor Networks

e Measurement, monitoring, tracking of
distributed physical phenomena using
wireless embedded sensors

— environmental conditions
— industrial monitoring

— chemicals
— weather
— sounds

— vibrations
— seismic

— wildfires
— pollutants
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Challenges

e Computational/power asymmetry
- limited compute power on each sensor node
- limited (battery) power on each sensor node

e Hostile commmunication environment
- multi-hop
- high loss rate

e Must be energy efficient
— minimize communication
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Distributed Sensing

e Transmitting raw data
can be inefficient

destination
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Distributed Sensing

e Transmitting raw data
can be inefficient

e Can we exploit
— intra-sensor correlation?
— inter-sensor correlation?
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Collaborative Sensing

e Qutput results rather
than raw data

e In-network data
processing

== compressed ——

A §data
p results

destination

e Collaboration requires
Inter-sensor communication
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Distributed Compressed Sensing

e Take random measurements
at each sensor

e Reconstruct jointly

qg; compressed
data
PLASL

destination

e Exploit intra- &
inter-sensor correlations
— Zero communication overhead

e Analogy w/ Slepian-Wolf
coding
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Common Sparse Supports Model

e Example:
audio signals
— sparse in Fourier Domain

- same frequencies
received by each node

— different attenuations and
delays (magnitudes and
phases)
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Common Sparse Supports Model

e Measure J signals, each K-sparse

e Signals share sparse components
but with different coefficients
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Common Sparse Supports Model
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Ensemble Reconstruction Comparison

e Separate reconstruction using linear
programming

- measurements per sensor: O(K log(N/K))

e Simultaneous Orthogonal Matching Pursuit

— extends greedy algorithms to signal ensembles

sharing a sparse support
[Tropp, Gilbert, Strauss; Temlyakov]

- measurements per sensor: cK

[Hmc=1]
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- Separate
Joint
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Simulation
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Real Data Example

e Environmental Sensing in Intel Berkeley Lab
e J =49 sensors, N = 1024 samples each

e Compare:
- transform coding K largest terms per sensor

- independent CS 4K measurements per sensor
- DCS 4 K measurements per sensor
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Temperature — Wavelets, K = 20

W

(a) Original

B

b) Transform Coding, SNR = 25.9499 dB
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¢) Compressed Sensing, SNR = 16.8255 dB

w

(d) Distributed Compressed Sensing, SNR = 29.4149 dB




DCS Benefits

Random projections for sensing and encoding
— exploit both intra- and inter-sensor correlations
— joint source/channel coding

Universality
— generic hardware

/
-—)—
\

Simple quantization ff_z\

Robust

- to noise, quantization, loss
— progressive

Zero inter-sensor collaboration
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Conclusions

o Compressive sensing
— exploits signal sparsity/compressibility information
— based on new uncertainty principles
— Integrates sensing, compression, processing
— natural for sensor network applications

e Ongoing research

- new algorithms for analog-to-information
conversion

- fast algorithms based on ECC matrices
- manifold models for multiple signals/images =

— connections to machine learning bCP

dsp.rice.edu/cs




