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Compressive Sensing 

Can we really acquire analog signals with “CS”? 

DA

-sparse 



Challenge 1 

Map analog sensing to matrix multiplication 

If        is bandlimited, x(t) x(t) =

1X

n=¡1
x[n]sinc(t=Ts ¡ n)

y[m] = hÁm(t); x(t)i =

1X

n=¡1
x[n] hÁm(t); sinc(t=Ts ¡ n)i



Challenge 2 

Map analog sparsity into a sparsifying dictionary 

x D ®



Candidate Analog Signal Models 

Model for     1 
Sparsifying 

dictionary for    a 

Sparsity 
level for  x 

multitone sum of    tones overcomplete DFT?    -sparse 

Bnyq

2
¡Bnyq

2
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X(F)

- Typical model in CS 
 

- Coherence 
 

- “Off-grid” tones  
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Candidate Analog Signal Models 

Model for     1 
Sparsifying 

dictionary for    a  
Sparsity 

level for  x 

multitone sum of    tones overcomplete DFT?    -sparse 

multiband sum of     bands ? ? 
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- Landau 
 

- Bresler, Feng, Venkataramani 
 

- Eldar and Mishali 
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The Problem with the DFT 

x =

N¡1X

k=0

Xke k
N

; ef :=

2
6664

ej2¼f0

ej2¼f

...

ej2¼f(N¡1)

3
7775

x[n] =

Z W

¡W
X(f)ej2¼fn df; 8n

1
2

¡ 1
2 0

X(f)

2W

NOT SPARSE 

DTFT 

DFT 

time-limiting 



Discrete Prolate Spheroidal Sequences 

(DPSS’s) 

Slepian [1978]: Given an integer     and             , 

the DPSS’s are a collection of     vectors 

 
 

that satisfy 

   

The DPSS’s are perfectly time-limited, but when  

            they are highly concentrated in frequency. 



DPSS Eigenvalue Concentration 

¸`

`

The first               eigenvalues      . 

The remaining eigenvalues      . 



Suppose that we wish to minimize 

 

 

 

over all subspaces      of dimension    .  

Another Perspective: Subspace Fitting 

Optimal subspace is spanned  

by the first    “DPSS vectors”. 



DPSS Examples 



DPSS’s for Bandpass Signals 



1
2

¡ 1
2 0

X(f)

2W

DPSS Dictionaries for CS 

Modulate    DPSS vectors 

to center of each band: 

 

 

 

 

 

 

       

Most multiband signals, when sampled and time-limited,  

are well-approximated by a sparse representation in    . 

   possible bands 

approximately square 

if            a 

D = [D1;D2; : : : ;DJ ]

D



Empirical Results: DFT Comparison 

[Davenport and Wakin - 2012] 



Empirical Results: DFT Comparison 

[Davenport and Wakin - 2012] 



Recovery Guarantees? 

DA

y b® bx = Db®



The Treachery of Images 



The Treachery of  

DA

®

A D

• Given   , choice of    is no longer unique 
 

• Correlations in     make it difficult to  

establish guarantees via standard tools 
 

• If     is poorly conditioned, we can have 

                                            or 

®x

D

D
kDb®¡D®k2 Àkb®¡®k2 kDb®¡D®k2 ¿kb®¡®k2



Signal-focused Recovery Strategy 

• Focus on     instead of  

 

• Measure error in terms of                instead of 

 

 

x ®

kbx¡ xk2 kb®¡®k2

p
1¡ ±kk®k2 · kAD®k2 ·

p
1 + ±kk®k2

p
1¡ ±kkD®k2 · kAD®k2 ·

p
1 + ±kkD®k2



CoSaMP 

initialize: 

until converged: 

 proxy: 
  

 identify: 
  

 merge: 
  

 update: 

 

 

 

 
 

 

output:  

 

r = y; x0 = 0; ` = 0;¡ = ;

h = A¤r
­ = f2S largest elements of jhjg
T = ­[¡

ex = argmin
supp(z)µT

ky ¡Azk2

x`+1 = exj¡
r`+1 = y¡Ax`+1

` = ` + 1

bx = x`

¡ = fS largest elements of jexjg



Key Steps 

­ = f2S largest elements of jhjg

ex = argmin
supp(z)µT

ky ¡Azk2

x`+1 = exj¡
¡ = fS largest elements of jexjg

Given a vector in     , use hard thresholding to find  

best sparse approximation 

      

Rn

¤opt(z; S) = argmin
j¤j=S

kz ¡P¤zk2

P¤ R(D¤): orthogonal projector onto 

      



Approximate Projection 

¤opt(z; S) = argmin
j¤j=S

kz ¡P¤zk2

P¤ R(D¤): orthogonal projector onto 

      

: estimate of      S(z; S) ¤opt(z; S)

kP¤optz¡PSzk2 · min
¡
²1kP¤optzk2; ²2kz¡P¤optzk2

¢

measure quality of approximation in 

“signal space”, not “coefficient space”  



Signal Space CoSaMP 

initialize: 

until converged: 

 proxy: 
  

 identify: 
  

 merge: 
  

 update: 

 

 

 

 
 

 

output:  

 

r = y; x0 = 0; ` = 0;¡ = ;

h = A¤r
­ = S(h;2S)

T = ­[¡

ex = argmin
z2R(DT )

ky ¡Azk2

x`+1 = P¡(ex)

r`+1 = y¡Ax`+1

` = ` + 1

bx = x`

¡ = S(ex;S)



Recovery Guarantees 

Suppose there exists an   -sparse     such that               and     

    satisfies the    -RIP of order     . 

 

If we observe                    , then 

 

 

 

 

For 

kx¡x`+1k2 · C1kx¡x`k2 + C2kek2

y = Ax + e

S x = D®®
A D 4S

±4k = 0:029; ²1 = 0:1; ²2 = 1;

kx¡x`k2 · 2¡`kxk2 + 25:4kek2

[Davenport, Needell, and Wakin - 2013] 



Practical Choices for 

S(z; S) = HS

µ
argmin
w:Dw=z

kwk1
¶

S(z; S)
Given   , we want to find an   -sparse     such that 

 

• Any sparse recovery algorithm! 

 

• CoSaMP 

 

• Orthogonal Matching Pursuit (OMP) 

 

•    -minimization followed by hard-thresholding `1

z S ® z ¼D®



Remaining Gaps 

• None of the “practical choices” are proven to provide the 

desired approximate projections 

 

• Experimental results suggest that (at least for certain 

dictionaries) none of these choices are sufficient 

 

• Recent progress 

– Hegde and Indyk (2013) 

– Giryes and Needell (2013) 

– weaker requirements on approximate projection 



Conclusion 

• Dealing with analog signals in the traditional compressive 

sensing framework requires 

– new sparsifying dictionaries 

– modified algorithms 

– signal-focused analysis 

 

• Many open questions remain 

– provably near-optimal algorithms for computing approximate 

projections 

– may actually involve the use of DPSS’s 

– efficient methods for handling both multiband and multitone 

signals simultaneously 



Thank You! 


