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Compressive Sensing
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[Can we really acquire analog signals with “CS”?]




Challenge 1

[ Map analog sensing to matrix multiplication]

If x(t) is bandlimited, z(t) = Z x[n|sinc(t/Ts — n)
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Challenge 2

[ Map analog sparsity into a sparsifying dictionary ]
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Candidate Analog Sighal Models

Sparsifying Sparsity

multitone  sum of S tones  overcomplete DFT? S-sparse

- Typical model in CS
X(F) - Coherence
I ‘ i | I - “Off-grid” tones
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Candidate Analog Sighal Models

Sparsifying Sparsity

multitone  sum of S tones  overcomplete DFT? S-sparse

multiband sum of K bands ? ?
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X(F) - Bresler, Feng, Venkataramani
- Eldar and Mishali




The Problem with th
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Discrete Prolate Spheroidal Sequences
(DPSS’s)

Slepian [1978]: Given an integer N and W <
the DPSS’s are a collection of IV vectors
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that satisfy
TN(Bw(Sg))) = )\gSg.

( )
The DPSS’s are perfectly time-limited, but when

Av =~ 1 they are highly concentrated in frequency. )
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DPSS Eigenvalue Concentration

10

107}

10"}

10 ¢

555 511 767 1023

14

2NW = 512
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The first ~ 2NW eigenvalues~ 1.
The remaining eigenvalues~ 0.
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Another Perspective: Subspace Fitting
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Suppose that we wish to minimize
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over all subspaces () of dimension % .
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Optimal subspace is spanned

by the first £ “DPSS vectors”.
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DPSS Examples
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DPSS’s for Bandpass Signals

-l - -

0

-100

-200 1
A S



DPSS Dictionaries for CS

Modulate k£ DPSS vectors
to center of each band:

D=[Dy,Ds,...,DJ]
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approximately square
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Most multiband signals, when sampled and time-limited,
are well-approximated by a sparse representation in D.
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Empirical Results: DFT Comparison
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Empirical Results: DFT Comparison
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Recovery Guarantees?
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The Treachery of Images

LCeci nest nas une fufle .



The Treachery of o

(T <
I

e Given x, choice of «is no longer unique

e Correlations in D make it difficult to
establish guarantees via standard tools
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o If Dis poorly conditiAoned, we can have R
|Da — Dal|s > ||a — ol or ||Da — Da|ls < ||a— all2



Signal-focused Recovery Strategy

e Focus on & instead of &

» Measure error in terms of || — x| instead of ||[a — a/|2

VI=dlalz - [|ADals - 1+ 8als
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CoSaMP

initialize: 7 =y,2° =0, =0, =0
until converged:
proxy: h=A"r
identify:| {2 = {25 largest elements of |h|}
merge: 1T =QUTI
update: ( = argmin ||y — Az||s
supp(z)CT

[' = {S largest elements of |z|}

xﬁ—l—l _ §|F

ritl =y — Azt
(=041

output: T =



Key Steps

(2 = {25 largest elements of |h|}

r = argmin |y — Az||s

supp(z) CT
[' = {S largest elements of |z|}
mé—l—l _ f‘I‘

Given a vector in R"; use hard thresholding to find
best sparse approximation

Pa: orthogonal projector onto R(D} )

Aopt(2,S) = argmin ||z — Paz||2
A|=S



Approximate Projection

Pa: orthogonal projector onto R(D} )

Aopt(2,S) = argmin ||z — Paz||2
A|=S

S(z, 5): estimate of Agpt (2, 5)

|Pa, 2 — Psz|2 - min (€1]|Pa,,,2l|2, €2]lz — Pa,,,2l2)

opt

measure quality of approximation in
“signal space”, not “coefficient space”



Sighal Space CoSaMP

initialize: r =y,2° =0,/ =0, =0
until converged:

proxy: h=A"r

identify: €2 = S(h,25)

merge: 1T =QUT

update: = = argmin |y — Az||s
2z€ER(Dr)

I =S(7,8)
ZCE_H — Pp(ﬁf)
rﬁ—l—l —qy — A$€+1
(=0+1

output: T =



Recovery Guarantees

Suppose there exists an S-sparse < such that £ = Do and
A satisfies the D-RIP of order 4.5.

If we observe y = Ax + €, then

lz — 22 - Cillz — 2|2 + Calle]|2

For 04, = 0.029,¢1 = 0.1,¢5 =1,

|z —2(l2 - 2722 +25.4]le]|2

[Davenport, Needell, and Wakin - 2013]



Practical Choices forS(z, S)

Given z, we want to find an S-sparse ¢ such that z ~ Do
e Any sparse recovery algorithm!

o CoSaMP

e Orthogonal Matching Pursuit (OMP)

 {1-minimization followed by hard-thresholding

S(z,5) = Hg (argmin HwH1>

w:Dw=z



Remaining Gaps

« None of the “practical choices” are proven to provide the
desired approximate projections

o Experimental results suggest that (at least for certain
dictionaries) none of these choices are sufficient

e Recent progress
- Hegde and Indyk (2013)
- Giryes and Needell (2013)
- weaker requirements on approximate projection



Conclusion

« Dealing with analog signals in the traditional compressive
sensing framework requires

- new sparsifying dictionaries
- modified algorithms
- signal-focused analysis

e Many open questions remain
- provably near-optimal algorithms for computing approximate
projections
- may actually involve the use of DPSS’s

- efficient methods for handling both multiband and multitone
signals simultaneously



Thank You!



