Compressive Sensing in Noise and the Role of Adaptivity

Mark A. Davenport

Georgia Institute of Technology School of Electrical and Computer Engineering

Compressive Sensing in Noise

When (and how well) can we estimate x from the measurements y?

Nonadaptive Compressive Sensing

Stable Signal Recovery

Given
$$y = \Phi x + e$$
, find x

Typical (worst-case) guarantee: If Φ satisfies the RIP

$$\|\widehat{x} - x\|_2^2 \le C \|e\|_2^2$$

Even if $\Lambda = \operatorname{supp}(x)$ is provided by an oracle, the error can still be as large as $\|\widehat{x} - x\|_2^2 = \|e\|_2^2/(1-\delta)$.

Stable Signal Recovery: Part II

Suppose now that Φ satisfies

$$A(1-\delta)\|x\|_{2}^{2} \le \|\Phi x\|_{2}^{2} \le A(1+\delta)\|x\|_{2}^{2} \qquad \|x\|_{0} \le 2S$$

In this case our guarantee becomes

$$\left\| \widehat{x} - x \|_{2}^{2} \le \frac{C}{A} \|e\|_{2}^{2} \right\|$$

Unit-norm rows $\|\widehat{x} - x\|_2^2 \leq C \frac{N}{M} \|e\|_2^2$

Expected Performance

- Worst-case bounds can be pessimistic
- What about the *average* error?
 - assume e is white noise with variance σ^2

 $\mathbb{E}\left(\|e\|_2^2\right) = M\sigma^2$

- for oracle-assisted estimator

$$\mathbb{E}\left(\|\widehat{x} - x\|_2^2\right) \le \frac{S\sigma^2}{A(1-\delta)}$$

- if e is Gaussian, then for ℓ_1 -minimization

$$\mathbb{E}\left(\|\widehat{x} - x\|_{2}^{2}\right) \leq \frac{C'}{A}S\sigma^{2}\log N$$

White Signal Noise

What if our signal x is contaminated with noise?

$$y = \Phi(x+n) = \Phi x + \Phi n$$

Suppose Φ has orthogonal rows with norm equal to \sqrt{B} . If n is white noise with variance σ^2 , then Φn is white noise with variance $B\sigma^2$.

$$\mathbb{E}\left[\|\widehat{x} - x\|_{2}^{2}\right] \leq C' \frac{B}{A} S \sigma^{2} \log N$$

White Signal Noise

What if our signal x is contaminated with noise?

$$y = \Phi(x+n) = \Phi x + \Phi n$$

Suppose Φ has orthogonal rows with norm equal to \sqrt{B} . If n is white noise with variance σ^2 , then Φn is white noise with variance $B\sigma^2$.

$$\mathbb{E}\left[\|\widehat{x} - x\|_{2}^{2}\right] \leq C' \frac{N}{M} S \sigma^{2} \log N$$

 $SNR = 10 \log_{10} \left(\frac{\|x\|_2^2}{\|\hat{x} - x\|_2^2} \right) \longrightarrow \begin{array}{c} \text{3dB loss per octave} \\ \text{of subsampling} \end{array}$

Noise Folding

[Davenport, Laska, Treichler, Baraniuk - 2011]

Room For Improvement?

There exists matrices Φ (with unit-norm rows) such that for *any* (sparse) x we have

$$\mathbb{E} \|\widehat{x} - x\|_2^2 \le C \frac{N}{M} S \sigma^2 \log N.$$
$$y_i = \langle \phi_i, x \rangle + e_i$$
$$\bigstar$$
$$\phi_i \text{ and } x \text{ are almost orthogonal}$$

- We are using most of our "sensing power" to sense entries that aren't even there!
- Tremendous loss in signal-to-noise ratio (SNR)
- It's hard to imagine any way to avoid this...

Can We Do Better?

Via a better choice of Φ ? Via a better recovery algorithm?

If
$$y = \Phi x + e$$
 with $e \sim \mathcal{N}(0, \sigma^2 I)$, then there exists an x such that for any \hat{x} and any Φ
$$\mathbb{E}\left[\|\widehat{x}(\Phi x + e) - x\|_2^2\right] \geq C \frac{N}{\|\Phi\|_F^2} S \sigma^2 \log(N/S).$$

If
$$y = \Phi(x + n)$$
 with $n \sim \mathcal{N}(0, \sigma^2 I)$, then there exists an x such that for any \hat{x} and any Φ

$$\mathbb{E}\left[\|\widehat{x}(\Phi(x+n)) - x\|_2^2\right] \ge C\frac{N}{M}S\sigma^2\log(N/S).$$

$$\Phi = U\Sigma V^* \quad y' = \Sigma^{-1} U^* y = V^* x + V^* n \quad \|V^*\|_F^2 = M$$
[Candès and Davenport - 2011]

Intuition

Suppose that y = x + n with $n \sim \mathcal{N}(0, I)$ and that S = 1

$$\mathbb{E} \|\widehat{x}(y) - x\|_2^2 \ge C' \log N$$

Proof Recipe

Ingredients (Makes $\sigma^2 = 1$ servings)

• Lemma 1: There exists a set \mathcal{X} of S-sparse vectors such that

•
$$|\mathcal{X}| = (N/S)^{S/4}$$

• $||x_i - x_j||_2 \ge \frac{1}{2}$ for all $x_i, x_j \in \mathcal{X}$
• $||\frac{1}{|\mathcal{X}|} \sum_i x_i x_i^* - \frac{1}{N}I|| \le \frac{\beta}{N}$ for some $\beta > 0$

• Lemma 2: Define $R^*_{mm}(\Phi) = \inf_{\widehat{x}} \sup_{\|x\|_0 \le S} \mathbb{E} \left[\|\widehat{x}(\Phi x + e) - x\|_2^2 \right].$

Suppose \mathcal{X} is a set of S-sparse vectors such that $\|x_i - x_j\|_2^2 \ge 8NR_{\min}^*(\Phi)$ for all $x_i, x_j \in \mathcal{X}$. Then $\frac{1}{2} \log |\mathcal{X}| - 1 \le \frac{1}{2|\mathcal{X}|^2} \sum_{i,j} \|\Phi x_i - \Phi x_j\|_2^2$.

Instructions

Combine ingredients and add a dash of linear algebra.

The Details

$$\mu = \frac{1}{|\mathcal{X}|} \sum_{i} x_{i} \quad Q = \frac{1}{|\mathcal{X}|} \sum_{i} x_{i} x_{i}^{*}$$

 $\frac{S}{4} \log(N/S) - 2 \le \frac{1}{|\mathcal{X}|^2} \sum_{i,j} \|\Phi x_i - \Phi x_j\|_2^2$ $= \operatorname{Tr}\left(\Phi^*\Phi\left(\frac{1}{|\mathcal{X}|^2}\sum_{i,j}(x_i - x_j)(x_i - x_j)^*\right)\right)$ $= \operatorname{Tr} \left(\Phi^* \Phi \left(2(Q - \mu \mu^*) \right) \right)$ $\leq 2 \operatorname{Tr} \left(\Phi^* \Phi Q \right)$ $\leq 2 \operatorname{Tr} (\Phi^* \Phi) \| Q \|$ $< 2 \|\Phi\|_{F}^{2} \cdot 16 R_{mm}^{*}(\Phi)(1+\beta)$ $R_{\rm mm}^*(\Phi) \ge \frac{S \log(N/S)}{128(1+\beta) \|\Phi\|^2}$

Lemma 1

Lemma 1: There exists a set \mathcal{X} of S-sparse points such that

•
$$|\mathcal{X}| = (N/S)^{S/4}$$

• $||x_i - x_j||_2 \ge \frac{1}{2}$ for all $x_i, x_j \in \mathcal{X}$
• $||\frac{1}{|\mathcal{X}|} \sum_i x_i x_i^* - \frac{1}{N}I|| \le \frac{\beta}{N}$ for some $\beta > 0$

Strategy

Construct ${\mathcal X}$ by sampling (with replacement) from

$$\mathcal{U} = \left\{ x \in \{0, \sqrt{1/S}, -\sqrt{1/S}\}^n : \|x\|_0 \le S \right\}$$

Repeat for $|\mathcal{X}| = (N/S)^{S/4}$ iterations.

With probability > 0, the remaining properties are satisfied.

Key: Matrix Bernstein Inequality [Ahlswede and Winter, 2002]

Adaptive Sensing

Adaptive Sensing

Think of sensing as a game of 20 questions

Simple strategy: Use M/2 measurements to find the support, and the remainder to estimate the values.

Thought Experiment

Suppose that after M/2 measurements we have perfectly estimated the support.

Does Adaptivity *Really* Help?

Sometimes...

- Noise-free measurements, but non-sparse signal
 - adaptivity doesn't help if you want a uniform guarantee
 - probabilistic adaptive algorithms can reduce the required number of measurements from $O(S\log(N/S))$ to $O(S\log\log(N/S))$ [Indyk et al. 2011]
- Noisy setting
 - distilled sensing [Haupt et al. 2007, 2010]
 - adaptivity can reduce the estimation error to

Which is it?

Which Is It?

Suppose we have a budget of M measurements of the form $y_i = \langle \phi_i, x \rangle + e_i$ where $\|\phi_i\|_2 = 1$ and $e_i \sim \mathcal{N}(0, \sigma^2)$

The vector ϕ_i can have an arbitrary dependence on the measurement history, i.e., $(\phi_1, y_1), \ldots, (\phi_{i-1}, y_{i-1})$

Theorem

There exist x with $||x||_0 \le S$ such that for *any* adaptive measurement strategy and *any* recovery procedure \hat{x} ,

$$\mathbb{E} \|\widehat{x}(y) - x\|_2^2 \ge C \frac{N}{M} S \sigma^2.$$

Thus, in general, adaptivity does not seem to help!

[Arias-Castro, Candès, and Davenport - 2011]

Proof Strategy

- Step 1: Consider a prior on sparse signals with nonzeros of amplitude $\mu\approx\sigma\sqrt{N/M}$
- Step 2: Show that if given a budget of M measurements, you cannot detect the support very well
- Step 3: Immediately translate this into a lower bound on the MSE

To make things simpler, we will consider a Bernoulli prior $\pi(x)$ instead of a uniform S-sparse prior:

$$x_j = \begin{cases} 0 & \text{with probability } 1 - S/N \\ \mu > 0 & \text{with probability } S/N \end{cases}$$

Proof of Main Result

Let $T = \{j : x_j \neq 0\}$ and set $\sigma^2 = 1$ For any estimator \hat{x} , define $\hat{T} := \{j : |\hat{x}_j| \ge \mu/2\}$ Whenever $j \in T \setminus \hat{T}$ or $j \in \hat{T} \setminus T$, $|\hat{x}_j - x_j| \ge \mu/2$

$$\|\widehat{x} - x\|_{2}^{2} \ge \frac{\mu^{2}}{4} |T \setminus \widehat{T}| + \frac{\mu^{2}}{4} |\widehat{T} \setminus T| = \frac{\mu^{2}}{4} |\widehat{T} \Delta T|$$

$$\mathbb{E} \|\widehat{x} - x\|_2^2 \ge \frac{\mu^2}{4} \mathbb{E} |\widehat{T} \Delta T|$$

Proof of Main Result

Lemma Under the Bernoulli prior, any estimate \widehat{T} satisfies $\mathbb{E}\left|\widehat{T}\Delta T\right| \ge S\left(1 - \frac{\mu}{2}\sqrt{\frac{M}{N}}\right).$ Thus, $\mathbb{E} \|\widehat{x} - x\|_2^2 \ge \frac{\mu^2}{4} \mathbb{E} |\widehat{T} \Delta T|$ $\geq S \cdot \frac{\mu^2}{4} \left(1 - \frac{\mu}{2} \sqrt{\frac{M}{N}} \right)$ Plug in $\mu = \frac{8}{3} \sqrt{\frac{N}{M}}$ and this reduces to $\mathbb{E} \|\widehat{x} - x\|_{2}^{2} \ge \frac{4}{27} \cdot \frac{SN}{M} \ge \frac{1}{7} \cdot \frac{SN}{M}$

Key Ideas in Proof of Lemma

$$\mathbb{P}_{0,j}(y_1,\ldots,y_m) = \mathbb{P}(y_1,\ldots,y_m | x_j = 0)$$
$$\mathbb{P}_{1,j}(y_1,\ldots,y_m) = \mathbb{P}(y_1,\ldots,y_m | x_j = \mu)$$

$$\mathbb{E} |\widehat{T}\Delta T| \geq \frac{S}{N} \sum_{j} (1 - \|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{\mathrm{TV}})$$
$$\geq S - \frac{S}{\sqrt{N}} \sqrt{\sum_{j} \|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{\mathrm{TV}}^2}$$

$$\sum_{j} \|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{\mathrm{TV}}^2 \le \frac{\mu^2}{4} M \longrightarrow \mathbb{E} |\widehat{T}\Delta T| \ge S \left(1 - \frac{\mu}{2}\sqrt{\frac{M}{N}}\right)$$

Key Ideas in Proof of Lemma

Pinsker's Inequality

$$\|\mathbb{P} - \mathbb{Q}\|_{\mathrm{TV}} \le \sqrt{K(\mathbb{P}, \mathbb{Q})/2}$$

$$\begin{aligned} \|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{\mathrm{TV}}^2 &\leq \frac{\pi_0}{2} K(\mathbb{P}_{0,j}, \mathbb{P}_{1,j}) + \frac{\pi_1}{2} K(\mathbb{P}_{1,j}, \mathbb{P}_{0,j}) \\ &\leq \frac{\mu^2}{4} \sum_i \mathbb{E} \phi_{i,j}^2 \end{aligned}$$

$$\sum_{j} \|\mathbb{P}_{1,j} - \mathbb{P}_{0,j}\|_{\mathrm{TV}}^2 \le \frac{\mu^2}{4} \sum_{i,j} \mathbb{E} \phi_{i,j}^2 = \frac{\mu^2}{4} M$$

Suppose that S = 1 and that $x_{j^*} = \mu$

- split measurements into $\log N$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the "active set"
- after subdividing $\log N$ times, return support

Suppose that S = 1 and that $x_{j^*} = \mu$

- split measurements into $\log N$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the "active set"
- after subdividing $\log N$ times, return support

Suppose that S = 1 and that $x_{j^*} = \mu$

- split measurements into $\log N$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the "active set"
- after subdividing $\log N$ times, return support

Suppose that S = 1 and that $x_{j^*} = \mu$

- split measurements into $\log N$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the "active set"
- after subdividing $\log N$ times, return support

Experimental Results

[Arias-Castro, Candès, and Davenport - 2011]

Open Questions

- No method can succeed when $\frac{\mu}{\sigma} \approx \sqrt{N/M}$, but the binary search approach succeeds as long as $\frac{\mu}{\sigma} \geq C\sqrt{N/M}$ [Davenport and Arias-Castro; Malloy and Nowak - 2012]
- Practical algorithms that work well for all values of $\boldsymbol{\mu}$
- Optimal algorithms for S>1
- New theory for restricted adaptive measurements
 - single-pixel camera: 0/1 measurements
 - magnetic resonance imaging (MRI): Fourier measurements
 - analog-to-digital converters: linear filter measurements
- New sensors and architectures that can actually acquire adaptive measurements

More Information

http://stat.stanford.edu/~markad

markad@stanford.edu