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Compressive Sensing in Noise
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When (and how well) can we
estimate x from the measurements y?
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Stable Signal Recovery

Given y = ®x + €,
find x

Typical (worst-case) guarantee: If ¢ satisfies the RIP

[ 16— l3 < Clel ]

Even if A = supp(x) is provided by an oracle, the error can
still be as large as ||z — z||3 = |le||3/(1 — ) .



Stable Sighal Recovery: Part Il

Suppose now that ® satisfies

A=)l < |8xl3 < AQ+O)al} il <25 |

In this case our guarantee becomes

. C
[ 7~ 2l3 < el ]

. . N
Unit-norm rows P [|7 — 2|3 < CMHFBH%




Expected Performance

o Worst-case bounds can be pessimistic

 What about the average error?
- assume e is white noise with variance ¢

E (Jlellz) = Mo~

- for oracle-assisted estimator
So?
<
= A(1 - 6)

- if e is Gaussian, then for ¢, -minimization

E (|7 - z2)

/

E (|z —z|3) < ZSJ2 log N



White Signal Noise

What if our signal = is contaminated with noise?
y=®(x+n)=dx+ dn

Suppose ® has orthogonal rows with norm equal to vV B.
If n is white noise with variance o2, then ®n is white noise

with variance Bo?.

B
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White Signal Noise

What if our signal = is contaminated with noise?
y=®(x+n)=dx+ dn

Suppose ® has orthogonal rows with norm equal to vV B.
If n is white noise with variance o2, then ®n is white noise

with variance Bo?.

N
[IE 1z — 23] < C’MSU2 log N]

NR = 101 ( ) ‘ 3dB loss per octave
SNR = 10logy of subsampling



Noise Folding
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[Davenport, Laska, Treichler, Baraniuk - 2011]



Room For Improvement?

There exists matrices ® (with unit-norm rows) such that for
any (sparse) * we have

N N
E |z — |3 < C’MSJQ log N.

yi = (i, T) + €
A

¢; and x are almost orthogonal

« We are using most of our “sensing power” to sense entries
that aren’t even there!

e Tremendous loss in signal-to-noise ratio (SNR)

e It’s hard to imagine any way to avoid this...



Can We Do Better?

Via a better choice of ®? Via a better recovery algorithm?

/If y = ®x + ewithe ~ N(O,U2I), then there )
exists an x such that for any = and any ®
E[|z(®x +e) — z||3] > Cr=—5 So”log(N/S).
g oI y
\

/If y = ®(z + n) withn ~ N(0,0°I), then there
exists an x such that for any = and any ®

N
E [|Z(®(x + n)) — z||3] > C—Sc”log(N/S).
M
- /
O=UXV" o =X"'U'y=V2+V*n |V*%2=M
[Candes and Davenport - 2011]




Intuition

Suppose that y = x +n withn ~ N (0,I) and that S =1

E|z(y) — 2z = C'log N

Vv 1og N [7]|0o = \/log N
L 1] ‘ 111

TN 1 1 lll 1 1




Proof Recipe

Ingredients (Makes o = 1servings)

« Lemma 1: There exists a set X of S -sparse vectors such that
X| = (N/S)>/*

o ||x; — xjll2 > 5 forall z;,z; € X

w2 vy — vl < S for some 3 > 0

o Lemma 2: Define R}, (®) = inf sup E[||Z(®z +e) —z|3].
T lzflo<S

Suppose A is a set of S-sparse vectors such that
|zi — z;||3 > 8N R}, (®) for all z;,z; € X.
Then Jlog [X| =1 < 53m >, ; [|®z; — @3-

Instructions
Combine ingredients and add a dash of linear algebra.



The Details

7 1og(N/S) —2 < pc% > i 1Pz — Pyl

=Tr (07 (i 30,5 (20 — 25) (@ — ;)" )
= Tr (9°® (2(Q — "))

< 2Tr (P*DQ)

< 2Tx (2°9) |IQ|

< 2|[®|[3. - 16, (®)(1 + 8)

) Slog(N/S)
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Lemma 1

Lemma 1: There exists a set X’ of .S-sparse points such that
X| = (N/S)5/*

Xr; — .I‘jHQ > % for all Ti, T € X

s Iy i wiwy — w1l < & for some 3 > 0

Strategy
Construct X by sampling (with replacement) from

U = {sc c {0,/1/S, —/1/S}" : |lz||o < 5}
Repeat for | X'| = (IN/S)°/* iterations.
With probability > 0, the remaining properties are satisfied.

Key: Matrix Bernstein Inequality [Ahlswede and Winter, 2002]



Adaptive Sensing




Adaptive Sensing

Think of sensing as a game of 20 questions

) — HPCE

Simple strategy: Use M /2 measurements to find the support,
and the remainder to estimate the values.



Thought Experiment

Suppose that after M /2 measurements we have perfectly
estimated the support.

M/254{ |I 5
— = H +
I H
25 :
E(fz — LUZ')2 = ﬁO’Q |
2 N
E|z—z|3 = SSJQ<< —So”log N

M M



Does Adaptivity Really Help?

Sometimes...

e Noise-free measurements, but non-sparse signal

- adaptivity doesn’t help if you want a uniform guarantee

- probabilistic adaptive algorithms can reduce the required
number of measurements from O(S'log(N/S)) to
O(Sloglog(N/S)) [Indyk et al. - 2011]

e Noisy setting
- distilled sensing [Haupt et al. - 2007, 2010]
- adaptivity can reduce the estimation error to

R N
E o — ] = S0
S Which is it?
E||§—x|]§: So?

M



Which Is It?

Suppose we have a budget of M measurements of the form
yi = (¢i, ) + e; where ||¢i]l2 =1 and e; ~ N(0,0%)

The vector ¢; can have an arbitrary dependence on the
measurement history, i.e., (¢1,91), ..., (¢i—1,Yi—1)

4heorem \

There exist x with |z||p < S such that for any adaptive
measurement strategy and any recovery procedure Z,

N
E |7(y) — 23 > O 550>

Qhus, in general, adaptivity does not seem to help! /

[Arias-Castro, Candes, and Davenport - 2011]



Proof Strategy

Step 1: Consider a prior on sparse signals with nonzeros of
amplitude p ~ o/ N/M

Step 2: Show that if given a budget of M measurements,
you cannot detect the support very well

Step 3: Immediately translate this into a lower bound on the
MSE

To make things simpler, we will consider a Bernoulli prior
m(x) instead of a uniform S-sparse prior:

o 0 with probability 1 — S/N
77l >0 with probability S/N



Proof of Main Result

let T={j:x; #0}and set 0° =1
For any estimator Z, define T := {j : 1z > p/2}

Whenever j € T\ T or j € T\ T, |2; — x| > /2

2 R 2 2
|2 — 23 2 ST\ T)+ 5T\ 7] = T TAT

P
) E |G- 2|3 > SE[TAT



Proof of Main Result

[Lemma R )
Under the Bernoulli prior, any estimate T’ satisfies
~ M
ETAT23(1’; N).
- /

2
Thus, E||Z — z||2 > 2B |TAT)

2

1L w | M
>s. 2 [1-24/ =
=5 4( 2 N)

Plug in = £,/2> and this reduces to

SN

4 SN
27 M

M

1
E |2 - |3 > > =



Key ldeas in Proof of Lemma

Po,j(y1s-- s Ym) = P(y1, ... ym|z; = 0)
Pl,j(yla' 3 7y’m) — P(yla O ,ym|$9 — lu’)

N S
E|TAT| > Z (1—|P1,; — PojllTv)

> 5 —\/Z [Py — Po 2y

i . M
Z IP1; = PollTy < %M ‘ E|TAT| > S (1 — % N)

J



Key ldeas in Proof of Lemma

(" )
Pinsker’s Inequality
IP - Qv < VE(P,Q)/2
\ Y,
o 1
Py — PojllFy < - K (Poj, P1j) + - K(Py1,Poj)
2
M 2
= 4 ZE@J

2 s 2 T
‘ Z IP1,; — PojllTy < e ZE@J = ZM
J ]



Adaptivity in Practice




Adaptivity In Practice
Suppose that S =1 and that x;« = u

Binary Search [Iwen and Tewfik - 2011, Davenport and Arias-Castro - 2012]
- split measurements into log IV stages

- in each stage, use measurements to decide if the nonzero is
in the left or right half of the “active set”

- after subdividing log NV times, return support
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Experimental Results

[Arias-Castro, Candes, and Davenport - 2011]



Open Questions

No method can succeed when £ =~ /N/M , but the binary
iy L
search approach succeeds as long as £>CyN/M
[Davenport and Arias-Castro; Malloy and Nowak - 2012]

Practical algorithms that work well for all values of
Optimal algorithms for S' > 1

New theory for restricted adaptive measurements

- single-pixel camera: 0/1 measurements

- magnetic resonance imaging (MRIl): Fourier measurements
- analog-to-digital converters: linear filter measurements

New sensors and architectures that can actually acquire
adaptive measurements



More Information
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http://stat.stanford.edu/~markad

markad@stanford.edu

~




