On The Fundamental Limits of
Adaptive Sensing

Mark A. Davenport

Stanford University
Department of Statistics

Joint work with Ery Arias-Castro and
Emmanuel Candes



Compressive Sensing
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When (and how well) can we
estimate x from the measurements y?




How Well Can We Estimate x ?

y= Az + =z 2z~ N(0,0°1)

Suppose that A has unit-norm rows.

There exist matrices A such that for any = with ||z|o < k

E|z—z|2 < C—ko?logn.
™m

For any choice of A and any possible recovery algorithm,
there exists an z with ||z||g < k£ such that

E|z— 2|2 > c’ﬁka log(n/k).



Room For Improvement?

yi = {(ai, ) + 2

|

a; and x are almost orthogonal

« We are using most of our “sensing power” to sense entries
that aren’t even there!

« Tremendous loss in signal-to-noise ratio (SNR)

e It’s hard to imagine any way to avoid this...



Adaptive Sensing

Think of sensing as a game of 20 questions
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Simple strategy: Use m /2 measurements to find the support,
and the remainder to estimate the values.



Thought Experiment

Suppose that after m /2 measurements we have perfectly
estimated the support.

m/2k< i
= l' u H +

 Sunfls

%, .

E(z; —x;)° = Ea N

. 2k
E|z—z|5 = —ko’< %kaQ log n
m



Does Adaptivity Really Help?

Sometimes...

e Noise-free measurements, but non-sparse signal
- adaptivity doesn’t help if you want a uniform guarantee

- probabilistic adaptive algorithms can reduce the required
number of measurements from O(klog(n/k)) to
O(kloglog(n/k)) [Indyk et al. - 2011]

e Noisy setting
- distilled sensing [Haupt et al. - 2007, 2010]
- adaptivity can reduce the estimation error to

E|7—z|2 = Zko?
m > Which is it?
~ k ’
E||z—z|3 = —ko”
m



Which Is It?

Suppose we have a budget of m measurements of the form
Y; = <CL@',ZC> + z; where HCLZHQ =1 and z; ~ N(O,O‘Z)

The vector a; can have an arbitrary dependence on the
measurement history, i.e., (a1,v1),-.., (@Gi—1,Yi—1)

m'neorem \

There exist x with ||z|lo < k such that for any adaptive
measurement strategy and any recovery procedure Z,

Elz(y) — 212 > 0 ko,
[£w) — 2l3 > O ko

Qhus, in general, adaptivity does not significantly helw

[Arias-Castro, Candes, and Davenport - 2011]



Proof Strategy

Step 1: Consider sparse sighals with nonzeros of amplitude
w=o\/n/m

Step 2: Show that if given a budget of m measurements,
you cannot detect the support very well

Step 3: Immediately translate this into a lower bound on the
MSE

To make things simpler, we will consider a Bernoulli prior
7(x) instead of a uniform k-sparse prior:

0 with probability 1 — k/n
T; =
’ pn >0 with probability k/n



Proof of Main Result

Let S={j:z; #0}and set o =1
For any estimator Z, define S := {j : z;| > 1/2}

Whenever j € S\ S or j € S\ S, |z; —x;] > 11/2
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Proof of Main Result

/Lemma R )
Under the Bernoulli prior, any estimate S satisfies
E@Aﬂzk<1g m).
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Plug in = £,/2 and this reduces to
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Key ldeas in Proof of Lemma

Po,i (Y15 Ym) = P(y1, - .. ym|z; = 0)
]P)l,j(yla s 7y’m) — I[D(yla O aym|xj — /U,)
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Key ldeas in Proof of Lemma
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Adaptivity In Practice
Suppose that £ =1 and that z;« =

Binary Search [Iwen and Tewfik - 2011, Davenport and Arias-Castro - 2012]
- split measurements into logn stages

- in each stage, use measurements to decide if the nonzero is
in the left or right half of the “active set”

- after subdividing logn times, return support
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Experimental Results

[Arias-Castro, Candes, and Davenport - 2011]



Conclusions

o Surprisingly, adaptive algorithms, no matter how complex,
cannot in general significantly improve over seemingly
naively simple nonadaptive strategies

o Adaptivity might still be very useful in practice

- how large does 1 need to be to transition from the regime
where adaptivity doesn’t help to where it does?

a > C'+v/(n/m)loglogn

o
- improved practical algorithms that work well simultaneously
for both large and small values of u

- practical architectures and algorithms for implementing
adaptive measurements in real-world settings



