Compressive Sensing
Background

Directly acquire a reduced set of low-dimensional
compressive measurements
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Nonlinear recovery via optimization-based, iterative,
or greedy algorithms

Basis Pursuit (BP) Basis Pursuit De-Noising (BPDN)

N , N PN : )
a = argmin ||« a = argmin ||«
(84

s.t. y=0¥a, 8 s.t. |ly — PPalls <€

g

The restricted isometry property (RIP) ensures
that & captures the information in the signal
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/Theorem [Candeées]: Suppose that y = ®Va + ¢
and ||allp < K. If ® satisfies the RIP of order 2K
with § < v/2 — 1, then the BPDN solution satisfies
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SubGaussian & satisfy the RIP if M = O(Klog(N/K)).

Does randomness provide any other benefits?

Compressive Signal Processing

Random measurements are information scalable
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In such scenarios, measurements are often
corrupted by interference and structured noise

y=Pxrg + Px; y:CI)a:S—I—Qe

Seek to remove contribution of ®x;or Qe to vy
before reconstructing zs.

Compressive Sensing

Mark A. Davenport, Jason N. Laska, Petros T. Boufounos, Michael B. Wakin, and Richard G. Baraniuk

Corruption

Interference Cancellation

Assume zg € Xs and xz; € X7, where (z;,xg) = 0 for
all r¢ € Xg, ;7 € X;7.  Also assume U = ],

Design M x M matrix P such that
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|P(@zr)2~0 and [[P(®xs)]2 ~ [[Pzs
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Note: Not always possible
Depends on structure of Xs and A7

Subspace Cancellation

Example: x;y has known support set J of size K;
Seek P such that R(®;) C N(P).
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Projection onto R(® )

Observe that Py = P®xg + PPx;
— Pdxg

/Theorem: If ® satisfies the RIP of order 2K ¢ + K)
then P® satisfies
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@r all x such that ||z]lo < 2Kg and supp(z) N J = (D/

Proof exploits two facts:

[Pzl = [[POz|; + [|(1 — P)Px|];

| - P)®zx|2  (({ - P)®x, dx) - 0
[P |(I = P)®zl2||Pxfl2 — 1+0
Implications

e Allows for “cancel-
then-recover”
approach to signal
recovery in interference
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o Useful tool in analysis
of greedy algorithms S Houmr aromance
such as Orthogonal o 2 &
Matching Pursuit (OMP)
and Regularized OMP (ROMP)

Corruption, Justice, and Democracy in

Justice

Corrupted Measurements

Suppose y = ¢x + (e
where Q = I and|lello < k.

In general, we

Kk corrupted
measurements

do not know the

locations of corruptions.

Yy o

Y
1
S m =

EEE EEEEE BN EERY

:
!

“Justice Pursuit” (JP)
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To analyze Justice Pursuit, we must study the
properties of the matrix |®{1].
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/Theorem: If & is a subGaussian matrix with \
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then [®€}] satisfies the RIP of order (K + k) with
\probability at least 1 — 3e
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Proof follows from
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and the facts t
—0||e]

nat with high probab

QHIIJHQ S €TQT(I)£E S 0

ility

ell2][z]]2

(1=0)]zllz < [[Pzfl3 < (1-

Experiments
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Compare JP with BPDN (IV = 1024, K = 10)
If M is sufficiently large, JP achieves exact recovery
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Democracy

W,
Corruption meets Justice
The key results of subspace cancellation and justice
combine to provide a simple proof that random
matrices are democratic.
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g
A matrix is democratic if we can remove D arbitrar
\(adversarially selected) rows and retain the RIP.
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If

M=0 ((K-I—D)log (%i]‘g))

then |®I] satisfies the RIP of order (K + D).

Construct P to cancel interference from columns
indexed by J, where J corresponds to a set of D

FrOWS.

J Pd = ®

Since @ will satisfy the RIP for any possible choice
of J, this establishes that ® is democratic.

Democracy in Action

When measurements are quantized using a finite-
range quantizer, some will saturate.

Democracy justifies a strategy of simply rejecting
saturated measurements.
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In fact, simulations show _ |°
this method out-performs |
the traditional approach,
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