A Simple Framework for Analog Compressive Sensing

Mark A. Davenport (with Michael B. Wakin)

Georgia Institute of Technology
School of Electrical and Computer Engineering
Compressive Sensing (CS)

\[y = \Phi x \]

Can we really acquire analog signals with "CS"?
Potential Obstacles

Obstacle 1: CS is discrete, finite-dimensional

Obstacle 2: Analog sparse representations
If $x(t)$ is bandlimited,

$$y[m] = \langle \phi_m(t), x(t) \rangle = \sum_{n=-\infty}^{\infty} x[n] \langle \phi_m(t), \text{sinc}(t/T_s - n) \rangle$$

Map analog sensing to matrix multiplication.
Obstacle 2

Map analog sparsity into digital sparsity

\[x \xrightarrow{\Psi} \alpha \]

$N \times 1$ vector

Nyquist-rate samples of $x(t)$
Candidate Analog Signal Models

<table>
<thead>
<tr>
<th></th>
<th>Model for $x(t)$</th>
<th>Basis for x</th>
<th>Sparsity level for x</th>
</tr>
</thead>
<tbody>
<tr>
<td>multitone</td>
<td>sum of S tones</td>
<td>overcomplete DFT</td>
<td>S'-sparse</td>
</tr>
</tbody>
</table>

- Typical model in CS
- Coherence
- “Off-grid” tones
Candidate Analog Signal Models

<table>
<thead>
<tr>
<th></th>
<th>Model for $x(t)$</th>
<th>Basis for x</th>
<th>Sparsity level for x</th>
</tr>
</thead>
<tbody>
<tr>
<td>multitone</td>
<td>sum of S tones</td>
<td>overcomplete DFT</td>
<td>S -sparse</td>
</tr>
<tr>
<td>multiband</td>
<td>sum of K bands</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

![Graph of $X(F)$]

- Landau
- Bresler, Feng, Venkataramanii
- Eldar, Mishali
The Problem with the DFT

\[x[n] = \int_{-W}^{W} X(f) e^{j2\pi fn} \, df, \quad \forall n \]

\[x = \sum_{k=0}^{N-1} X_k e^{\frac{jk}{N}}, \quad e^f := \begin{bmatrix} e^{j2\pi f_0} \\ e^{j2\pi f} \\ \vdots \\ e^{j2\pi f(N-1)} \end{bmatrix} \]

NOT SPARSE
Another Perspective: Subspace Fitting

Suppose that we wish to minimize

$$
\int_{-W}^{W} \left\| e_f - P_Q e_f \right\|_2^2 \, df
$$

over all subspaces Q of dimension k.

Optimal subspace is spanned by the first k “DPSS vectors”.

$$
e_f := \begin{bmatrix}
e^{j2\pi f_0} \\
e^{j2\pi f} \\
\vdots \\
e^{j2\pi f(N-1)}
\end{bmatrix}$$
Discrete Prolate Spheroidal Sequences (DPSS’s)

Slepiann [1978]: Given an integer N and $W \leq \frac{1}{2}$, the DPSS’s are a collection of N vectors

$$s_0, s_1, \ldots, s_{N-1} \in \mathbb{R}^N$$

that satisfy

$$\mathcal{T}_N(\mathcal{B}_W(s_\ell))) = \lambda_\ell s_\ell.$$

The DPSS’s are perfectly time-limited, but when $\lambda_\ell \approx 1$ they are highly concentrated in frequency.
DPSS Eigenvalue Concentration

The first \(\approx 2NW\) eigenvalues \(\approx 1\).
The remaining eigenvalues \(\approx 0\).

\[
N = 1024 \\
W = \frac{1}{4} \\
2NW = 512
\]
DPSS Examples

$N = 1024 \quad W = \frac{1}{4}$

\[x[n] \]

\[|X(f)| \]

\(\ell = 0 \)

\(\ell = 127 \)

\(\ell = 511 \)
DPSS’s for Bandpass Signals
DPSS Dictionaries for CS

Modulate k DPSS vectors to center of each band:

$$\Psi = [\Psi_1, \Psi_2, \ldots, \Psi_J]$$

approximately square if $k \approx 2NW$

Most multiband signals, when sampled and time-limited, are well-approximated by a sparse representation in Ψ.
Block-Sparse Recovery

Nonzero coefficients of α should be clustered in blocks according to the occupied frequency bands

$$x = [\Psi_1, \Psi_2, \ldots, \Psi_J] \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_J \end{bmatrix}$$

This can be leveraged to reduce the required number of measurements and improve performance through “model-based CS”

- Baraniuk et al. [2008], Blumensath and Davies [2009, 2011]
- Group LASSO
Empirical Results: Noise

\[N = 4096 \]
\[M = 512 \]
\[K = 5 \]
\[\frac{B}{B_{\text{nyq}}} = \frac{1}{256} \]

[Davenport and Wakin - 2012]
Empirical Results: DFT Comparison

\[N = 4096 \]

\[\frac{B}{B_{\text{nyq}}} = \frac{1}{256} \]

\[K = 5 \]

[Davenport and Wakin - 2012]
Empirical Results: DFT Comparison

\[N = 4096 \]

\[\frac{B}{B_{\text{nyq}}} = \frac{1}{256} \]

\[K = 5 \]
Conclusions

• DPSS’s can be used to efficiently represent most sampled multiband signals
 - far superior to DFT

• Two types of error: approximation + reconstruction
 - approximation: small for most signals
 - reconstruction: tends to be small
 - delicate balance in practice, seems to be a sweet spot

• This approach combines careful design of Ψ with more sophisticated sparse models
 - relevant in many contexts beyond ADCs