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Can we really acquire analog signals with “CS”? 



Potential Obstacles  

Obstacle 1: CS is discrete, finite-dimensional 

Obstacle 2: Analog sparse representations 



Obstacle 1 

Map analog sensing to matrix multiplication 

If         is bandlimited, 
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Obstacle 2 

Map analog sparsity into digital sparsity 
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Candidate Analog Signal Models 
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Candidate Analog Signal Models 

Model for     1 Basis for    a 
Sparsity 

level for  x 

multitone sum of    tones overcomplete DFT    -sparse 

multiband sum of     bands ? ? 
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The Problem with the DFT 
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NOT SPARSE 

DTFT 

DFT 

time-limiting 



Suppose that we wish to minimize 

 

 

 

over all subspaces      of dimension    .  

Another Perspective: Subspace Fitting 

Optimal subspace is spanned  

by the first    “DPSS vectors”. 



Discrete Prolate Spheroidal Sequences 

(DPSS’s) 

Slepian [1978]: Given an integer     and             , 

the DPSS’s are a collection of     vectors 

 
 

that satisfy 

   

The DPSS’s are perfectly time-limited, but when  

            they are highly concentrated in frequency. 



DPSS Eigenvalue Concentration 
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The first               eigenvalues      . 

The remaining eigenvalues      . 



DPSS Examples 



DPSS’s for Bandpass Signals 
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DPSS Dictionaries for CS 

Modulate    DPSS vectors 

to center of each band: 

 

 

 

 

 

 

       

Most multiband signals, when sampled and time-limited,  

are well-approximated by a sparse representation in    . 

   possible bands 

approximately square 
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Block-Sparse Recovery 

Nonzero coefficients of     should be clustered in blocks 

according to the occupied frequency bands 

 

 

 

 

 

 

This can be leveraged to reduce the required number of 

measurements and improve performance through “model-

based CS” 

–Baraniuk et al. [2008], Blumensath and Davies [2009, 2011] 

–Group LASSO 

 

 

 



Empirical Results: Noise 

[Davenport and Wakin - 2012] 



Empirical Results: DFT Comparison 

[Davenport and Wakin - 2012] 



Empirical Results: DFT Comparison 

[Davenport and Wakin - 2012] 



Conclusions 

• DPSS’s can be used to efficiently represent most sampled 

multiband signals 

– far superior to DFT 

 

• Two types of error: approximation + reconstruction 

– approximation: small for most signals 

– reconstruction: tends to be small 

– delicate balance in practice, seems to be a sweet spot 

 

• This approach combines careful design of      with more 

sophisticated sparse models 

– relevant in many contexts beyond ADCs 


