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Compressive Sensing (CS)
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[Can we really acquire analog signals with “CS”?]




Potential Obstacles
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Obstacle 1: CS is discrete, finite-dimensional
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Obstacle 2: Analog sparse representations
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Obstacle 1

[ Map analog sensing to matrix multiplication]

If (%) is bandlimited,
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Obstacle 2

[ Map analog sparsity into digital sparsity ]
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Candidate Analog Sighal Models

Model for x(t) Basis for x Sl
level for z

multitone  sum of S tones overcomplete DFT S -sparse

- Typical model in CS
X(F) - Coherence
I ‘ i | I - “Off-grid” tones
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Candidate Analog Sighal Models

Model for x(t) Basis for x >parsity
level for z

multitone  sum of S tones overcomplete DFT S -sparse

multiband sum of K bands ? ?
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The Problem with th
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Another Perspective: Subspace Fitting
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Suppose that we wish to minimize
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over all subspaces () of dimension % .
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Optimal subspace is spanned

by the first £ “DPSS vectors”.
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Discrete Prolate Spheroidal Sequences
(DPSS’s)

Slepian [1978]: Given an integer N and W <
the DPSS’s are a collection of IV vectors
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that satisfy
TN(Bw(Sg))) = )\gSg.
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The DPSS’s are perfectly time-limited, but when

Av =~ 1 they are highly concentrated in frequency. )
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DPSS Eigenvalue Concentration
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2NW = 512
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The first ~ 2NW eigenvalues~ 1.
The remaining eigenvalues~ 0.
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DPSS Examples
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DPSS’s for Bandpass Signals
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DPSS Dictionaries for CS

Modulate £ DPSS vectors
to center of each band:

U = [0, U,..., 0]
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approximately square

ifk~2NW

X(f) |

lllllllll

J possible bands

-

\_

Most multiband signals, when sampled and time-limited,
are well-approximated by a sparse representation in W .
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Block-Sparse Recovery

Nonzero coefficients of « should be clustered in blocks
according to the occupied frequency bands
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This can be leveraged to reduce the required number of
measurements and improve performance through “model-
based CS”

-Baraniuk et al. [2008], Blumensath and Davies [2009, 2011]
-Group LASSO



Recovery SNR (dB)

Empirical Results: Noise
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Empirical Results: DFT Comparison
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Empirical Results: DFT Comparison
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Conclusions

DPSS’s can be used to efficiently represent most sampled
multiband sighals

- far superior to DFT

Two types of error: approximation + reconstruction
- approximation: small for most signals
- reconstruction: tends to be small
- delicate balance in practice, seems to be a sweet spot

This approach combines careful design of ¥ with more
sophisticated sparse models

- relevant in many contexts beyond ADCs



