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−Fig. 1. (a) CMUX system diagram. Each of the J channels is spread by a different chipping sequence, and then summed and sampled. (b) CMUX equivalent system. The sampling

operation is moved to the front of the system for the sake of analysis.

will yield a recovered signal �α that satisfies ��α − α�2 ≤ C0� pro-

vided that �e�2 ≤ �, where C0 > 1 is a constant depending only on

δ [5]. While convex optimization techniques like BPDN are pow-

erful methods for CS signal recovery, there also exist a variety of

alternative algorithms, such as greedy algorithms, that are used in

practice and have comparable performance guarantees.

A key theoretical CS result is that by drawing only M =
O(K log(N/K)) random rows, we obtain a Φ that satisfies the RIP

of order 2K with high probability (and thus A has RIP if Ψ is an

orthonormal basis). As we will see, similar guarantees are possible

for highly structured measurement systems as well.

2.2. Compressive sampling architectures

Several hardware architectures have been proposed and implemented

to perform CS in practical settings with analog signals. Selected

examples include the random demodulator (RD), random filtering,

random convolution, and the modulated wideband converter [1–3].

These systems aim to capture a large portion of bandwidth with

fewer samples than Shannon would prescribe.

We briefly describe the RD as an example of such a system [1].

The input analog signal is modulated by a ±1 “chipping sequence”

operating at or above the Nyquist rate and integrated. The output

of the integrator is sampled, and the integrator is reset after each

sample. The ideal integrator with reset can be replaced by a low

pass filter.

The components of the RD are typical for many of the afore-

mentioned architectures. We also note that other parallelized archi-

tectures to date require the use of multiple ADCs [2, 10].

3. CMUX: A NEW MULTI-CHANNEL ARCHITECTURE

3.1. System description

The CMUX acquires J independent signal channels, each of band-

width W/2 Hz, into a single stream of samples running at the

Nyquist rate (W Hz) of any one channel. As shown in Figure 1(a),

each channel is first mixed down to baseband to obtain xj(t) and

then modulated by a pseudo-random ±1 chipping sequence pj(t)
with chipping frequency W Hz. The spread channels are then

summed and sampled once per chip by a single ADC. It is impor-

tant to note that the summation occurs over the channels and not

over time (in contrast to previous systems [1–3]).

Without loss of generality, the CMUX can be written as a

W × JW matrix Φ, formed by concatenating diagonal W × W

submatrices Φj , j = 1, · · · , J . For the sake of analysis, we will

consider the elements along the diagonals to be ±1 Rademacher

variables. As an example, let J = 3 and W = 3. Then the Φ

matrix might look like

Φ =




−1 0 0
0 1 0
0 0 −1

� �� �
Φ1

1 0 0
0 1 0
0 0 −1

� �� �
Φ2

1 0 0
0 −1 0
0 0 −1

� �� �
Φ3



 (4)

We consider signals that are jointly sparse over the combined

bandwidth of the spectrum channels. The sparsity basis Ψ for this

model is a JW × JW block diagonal matrix with W × W DFT

bases along the diagonal. Thus, we aim to recover a K-sparse vector

α ∈ RJW
such that y = Aα, where A is the union of orthonormal

bases

A = [Φ1F ,Φ2F , · · · ,ΦJF ], (5)

and where F is the W ×W unitary DFT matrix. For the remainder

of this paper, the subscript j denotes the submatrix (or subvector)

corresponding to channel j and the subscript \j denotes the subma-

trix (or subvector) corresponding to all channels except for j.

It has recently been demonstrated by Romberg that A of this

form satisfy the RIP [7]. We present a modified version of the state-

ment of the theorem (as suggested in [7]) for completeness:

Theorem 1 (Theorem 3.1 in [7]). Let A be defined as in (5), and fix
δ ∈ (0, 1). Then there exists C0 such that when

W ≥ C1K log4(JW ) (6)

A satisfies the RIP of order K as in (2) with probability 1−C
2
0/δC

2
1 ,

where C0 is constant.

Note that the constant C0 is the same as that in [7], and improved

bounds on the probability may be obtained [8]. It is clear from this

statement that for the total bandwidth N = JW , the number of

possible channels can be upper bounded as J ≤ N
K

1
C1 log4 N

.

3.2. The CMUX and bandpass sampling

Real-world RF tuners often mix signals to an “intermediate fre-

quency” (IF) instead of directly to baseband. For example, candi-

date CMUX tuners for RF applications use IFs between 22 MHz

and 70 MHz. Sampling systems with IF signals typically complete

the downconversion using a bandpass sampling technique that in-

tentionally undersamples the IF signal so that its non-aliased image

falls near 0 Hz.

Most CS samplers ignore this issue, meaning that in practice

they must consider a bandwidth that is 2fIF Hz higher than neces-

sary. The CMUX, however, can easily bandpass sample. Consider

the alternative but equivalent CMUX system in Figure 1(b). This
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operation is moved to the front of the system for the sake of analysis.
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Figure 9.  30 MHz to 54 MHz 

  

Figure 10.  54 MHz to 88 MHz 
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