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Sensor Explosion



Digital Revolution

“If we sample a signal at twice its highest 
frequency, then we can recover it exactly.”

Whittaker-Nyquist-Kotelnikov-Shannon



Data Deluge

By 2011, ½ of digital universe will have no home

[The Economist – March 2010]



Data is rarely intrinsically high-dimensional

Signals often obey low-dimensional models

– sparsity

– manifolds

– low-rank matrices

The “intrinsic dimension”     can be much less than 
the “ambient dimension”

Dimensionality Reduction



Compressive 
Sensing



Compressive sensing [Donoho; Candes, Romberg, Tao – 2004]

Replace samples with general linear measurements

Compressive Sensing

measurements

-sparse

sampled
signal



Sparsity Through History

William of Occam (1288-1348)

“Entities must not be   
multiplied unnecessarily”

“Simplicity is the ultimate   
sophistication”

-Leonardo da Vinci

“Make everything as 
simple as possible, but 
not simpler”

-Albert Einstein



Sparsity Through History

Gaspard Riche, baron de Prony (1795)

– algorithm for estimating the 
parameters of a few complex 
exponentials



Sparsity Through History

Constantin Carathéodory (1907)

– given a sum of     sinusoids

we can recover        from 
samples at any points in time



Sparsity Through History

Arne Beurling (1938)

– given a sum of     impulses

we can recover         from only a 
piece of its Fourier transform



Sparsity Through History

Ben “Tex” Logan (1965)

– given a signal        with bandlimit
, we can arbitrarily corrupt an 

interval of length           and still be 
able to recover        no matter how it 
was corrupted



Sparsity

nonzero
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Fourier
coefficients



How Can We Exploit Sparsity

Two key theoretical questions:

• How to design     that preserves the structure of    ?

• Algorithmically, how to recover     from the 
measurements   ?



Sensing Matrix
Design



Restricted Isometry Property (RIP)

For any pair of    -sparse signals    and    ,



RIP Matrix: Option 1

• Choose a random matrix

– fill out the entries of     with i.i.d. samples from a sub-
Gaussian distribution

– project onto a “random subspace”

• Deep connections with random matrix theory and 
Johnson-Lindenstrauss Lemma

[Baraniuk, M.D., DeVore, Wakin – Const. Approx. 2008]



• Random Fourier submatrix

RIP Matrix: Option 2

[Candes and Tao – Trans. Information Theory 2006]



Hallmarks of Random Measurements

Stable

will preserve information, be robust to noise

Democratic
Each measurement has “equal weight”

Universal

Random    will work with any fixed orthonormal basis



Signal Recovery



Signal Recovery

ill-posed 
inverse 
problem

given             

find  



-minimization:

-minimization:

If     satisfies the RIP, then      and     are equivalent! 

Sparse Recovery: Noiseless Case

given             
find

linear 
program

nonconvex
NP-Hard



Why -Minimization Works



Recovery in Noise

• Optimization-based methods

• Greedy/Iterative algorithms

– OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT



Compressive 
Sensing in Practice



Compressive Sensing in Practice

• Tomography in medical imaging

– each projection gives you a set of Fourier coefficients

– fewer measurements mean

 more patients

 sharper images

 less radiation exposure

• Wideband signal acquisition

– framework for acquiring sparse, wideband signals

– ideal for some surveillance applications

• “Single-pixel” camera



“Single-Pixel” Camera

© MIT Tech Review

[Duarte, M.D., Takhar, Laska, Sun, Kelly, Baraniuk – Sig. Proc. Mag. 2008]



TI Digital Micromirror Device



Image Acquisition



“Single-Pixel” Camera

© MIT Tech Review

random
pattern on
DMD array

single photon 
detector

image
reconstruction

A/D conversion



Conclusions

• Compressive sensing

– exploits signal sparsity/compressibility

– integrates sensing with compression

– enables new kinds of imaging/sensing devices

• Near/Medium-term applications

– tomography/medical imaging

– imagers where CCDs and CMOS arrays are blind

– wideband A/D converters
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