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Sensor Explosion




Digital Revolution
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(“If we sample a signal at twice its highest
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frequency, then we can recover it exactly.”
Whittaker-Nyquist-Kotelnikov-Shannon D




Data Deluge
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By 2011, %2 of digital universe will have no home

[The Economist — March 2010]



Dimensionality Reduction

Data is rarely intrinsically high-dimensional

Signals often obey low-dimensional models
— sparsity
— manifolds
— low-rank matrices

The “intrinsic dimension” K can be much less than
the “"ambient dimension” N
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Compressive Sensing

Compressive sensing [Donoho; Candes, Romberg, Tao - 2004]

Replace samples with general linear measurements

M x 1
measurements

y=2>ou

M x N

N x 1
sampled

signal

K -sparse



Sparsity Through History

William of Occam (1288-1348)

“Entities must not be
multiplied unnecessarily”
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“Simplicity is the ultimate

sophistication”

-Leonardo da Vinci
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“"Make everything as
simple as possible, but

not simpler”
-Albert Einstein
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Sparsity Through History

Gaspard Riche, baron de Prony (1795)

— algorithm for estimating the
parameters of a few complex
exponentials




Sparsity Through History

Constantin Caratheodory (1907)
— given a sum of K sinusoids

i=1
we can recover z(t) from 2K + 1
samples at any points in time




Sparsity Through History

Arne Beurling (1938)
— given a sum of K impulses

x(t) = Zaié(t —t;)

we can recover x(t) from only a
piece of its Fourier transform




Sparsity Through History

Ben "Tex” Logan (1965)

— given a signal z(t) with bandlimit
(), we can arbitrarily corrupt an
interval of length 27 /€2 and still be
able to recover x(t) no matter how it
was corrupted




Sparsity
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How Can We Exploit Sparsity
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Two key theoretical questions:
e How to design ¢ that preserves the structure of x ?

e Algorithmically, how to recover = from the
measurements y ?
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Design
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Restricted Isometry Property (RIP)
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For any pair of K-sparse signals x;and z-,
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[Pz — Paa|3

1—-0<
|z — 22|35

<1+09.




RIP Matrix: Option 1

e Choose a random matrix

— fill out the entries of ® with i.i.d. samples from a sub-
Gaussian distribution

— project onto a “random subspace”

e Deep connections with random matrix theory and
Johnson-Lindenstrauss Lemma

M = O(Klog(N/K)) < N

[Baraniuk, M.D., DeVore, Wakin — Const. Approx. 2008]



RIP Matrix: Option 2

e Random Fourier submatrix

M = O(Klog”?(N/K)) < N

[Candes and Tao - Trans. Information Theory 2006]



Hallmarks of Random Measurements

Stable
® will preserve information, be robust to noise

Democratic
Each measurement has “equal weight”

Universal
Random @ will work with any fixed orthonormal basis
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Signal Recovery




Signal Recovery
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find x

N
giveny = ®x + ¢

\ ill-posed
Y, inverse
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Sparse Recovery: Noiseless Case

4 )
given y = Pz
find x
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{o -minimization: T

arg min ||z ||g «— nonconvex

rERN NP-Hard
s.t. y=®x
¢1-minimization: Z = argmin Hle +— linear
rERN program
s.t. y=>x

If ® satisfies the RIP, then ¢, and ¢; are equivalent!



Why /,-Minimization Works

Tr = arg min ||x||;
reRN

s.t. y=>x

{2/ : &2’ =y}



Recovery in Noise

e Optimization-based methods

r = argmin ||x|
reERN

st. |y —Px|2 <

e Greedy/Iterative algorithms
- OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT
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|z —zl2 < Collefl2 + 1

Iz — z x|l
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Compressive
Sensing in Practice
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Compressive Sensing in Practice

e Tomography in medical imaging
— each projection gives you a set of Fourier coefficients

- fewer measurements mean
* more patients
= sharper images
= |ess radiation exposure

e Wideband signal acquisition
- framework for acquiring sparse, wideband signals
- ideal for some surveillance applications

e "Single-pixel” camera



“Single-Pixel” Camera
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© MIT Tech Review

[Duarte, M.D., Takhar, Laska, Sun, Kelly, Baraniuk — Sig. Proc. Mag. 2008]



TI Digital Micromirror Device

Mirror =10 deg

CMOS
Substrate

Spring Tip



Image Acquisition

16384 Fixels 16334 Pixels
{Jriginal 1600 Weasurements 3300 Measurements
(10%o) (20%0)

65536 Pixels 65536 Pixels
1300 MMeasurements 3300 Deasurements
(2%0) (5%0)




"Single-Pixel” Camera

random
patternon| g
DMD array '''' =
-I-7 [ single photon
detector
image
- reconstruction
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A/D conversion
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Conclusions

e Compressive sensing
— exploits signal sparsity/compressibility
— integrates sensing with compression
— enables new kinds of imaging/sensing devices

e Near/Medium-term applications
- tomography/medical imaging
- imagers where CCDs and CMOS arrays are blind
— wideband A/D converters

Time Window Time Window
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