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Sparse Estimation 

-sparse 

How well can we estimate    ? 



Applications 

• Statistics  

– model selection / variable selection in high-dimensional 

regression 

 

 

• Inverse problems 

 

 

• Compressive sensing (CS) 

– matrix      represents a sensing system  

– typically underdetermined 

– sparsity acts as a regularizer      



Core Challenges in CS 

• How should we design the matrix     so that      is as small 

as possible? 

 

 

 

 

 

 

 

 

• How can we recover    from the measurements    ? 



Answers 

• Choose a random matrix 

– fill out the entries of     with i.i.d. samples from a sub-

Gaussian distribution 

– project onto a “random subspace” 

 

 

 

 

 

• Use any sparse approximation algorithm 

Is this the best we can do? 



Recovery from Noisy Measurements 

  Given                    or                      , 

find     

• Optimization-based methods 

– basis pursuit, basis pursuit de-noising, Dantzig selector 

 

 

 

 
 

• Greedy/Iterative algorithms 

– OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT, … 



Stable Signal Recovery 

Suppose that we observe                                         and that     satisfies the 

RIP of order     .  

 

 

 

 

Typical (worst-case) guarantee 

 

 

 

Even if                     is provided by an oracle, the error can 

still be as large as                                       . 

 



Stable Signal Recovery: Part II 

Suppose now that     satisfies 

 

 

 
 

In this case our guarantee becomes  

 

 

 

 
 

  Unit-norm rows 

 



Expected Performance 

• Worst-case bounds can be pessimistic 
 

• What about the average error? 

–  assume     is white noise with variance 

 

 

– for (nonadaptive) oracle 

 

 
 

– if    is Gaussian, then for    -minimization 



Can We Do Better? 

• Better choice of    ? 

• Better recovery algorithm? 

 

Assume we have a budget for         .  

If we knew the support of    a priori, then by adapting     to 

exploit this knowledge we could achieve  

 

 
 

Is there any way to match this performance without knowing 

the support of    in advance? 



No! 

[Candès and Davenport - 2011] 

Theorem:   

If                   with                      , then 

 

 
 

If                      with                       , then 

See also: Raskutti, Wainwright, and Yu (2009) 

     Ye and Zhang (2010) 



Intuition 

Suppose that                  with                    and that  



Proof Recipe 

Ingredients  [Makes           servings] 

• Lemma 1: Suppose     is a set of    -sparse points such that 

          for all                 .   

          Then                                                             . 
 

• Lemma 2: There exists a set     of    -sparse points such that 

•   

•                         for all  

•                                         for some 

 

Instructions 

Combine ingredients and add a dash of linear algebra.       



Proof Outline 



Recall: Lemma 2 

Lemma 2: There exists a set     of    -sparse points such that 

•   

•                         for all  

•                                         for some 

 

Strategy 

 Construct     by sampling (with replacement) from  

 

 
 

 Repeat for                          iterations. 
 

With probability       , the remaining properties are satisfied. 
 

Key: Matrix Bernstein Inequality  [Ahlswede and Winter, 2002]   

 



Recap 

Noise added to the measurements 

 

 

 

 

 

Noise added to the signal 



Noise Folding 

[Davenport, Laska, Treichler, and Baraniuk - 2011] 



Adaptivity to the Rescue? 

What if we adapt the measurements to the particular signal? 

 

 

 

 

 

 

 

If we are too greedy, our support estimate might be wrong… 

 

 Does adaptivity really help? 



Sometimes… 

• Information-based complexity: “Adaptivity doesn’t help!” 

– assumes signal     lies in a set      satisfying certain conditions 

– noise-free measurements 

– adaptivity reduces minimax error over       by at most        
 

• Nevertheless, adaptivity can still help  [Indyk et al. - 2011] 

– reduced number of measurements in a probabilistic setting 

– still requires noise-free measurements 
 

• What about noise?   

– distilled sensing (Haupt, Castro, Nowak, and others) 

– message seems to be that adaptivity really helps in noise 



Adaptive Compressive Sensing 

Suppose we have a budget of      measurements of the form 

 

 

where                and                     .   
 

The vector     can have an arbitrary (but deterministic) 

dependence on the measurements  

 

Consider the minimax MSE 

 

  



Possibilities include 
 

• Adaptive oracle rate: 

 

• Nonadaptive rate:   

 

• Somewhere in-between? 

Main Result 

[Arias-Castro, Candès, and Davenport - 2011] 

In general, adaptivity does not significantly help!! 



Underlying Ideas 

Step 1:  Consider sparse signals with nonzeros of amplitude 

                    

 

Step 2:  Show that if you have fewer than      measurements,  

         then with high probability you will fail to recover a   

         significant fraction of the support.    

 

Step 3:  Immediately translate this into a lower bound on the  

         MSE. 

[Arias-Castro, Candès, and Davenport - 2011] 



Adaptivity in Practice 

Suppose that            and that  

 

Algorithm 1 [Castro et al. – 2008] 

– start with random (Rademacher) measurements 

– after each measurement, compute posterior distribution 

– re-weight subsequent measurements using  

 

Algorithm 2 [Iwen and Tewfik – 2011] 

– split measurements into           stages  

– in each stage, use measurements to decide if the nonzero is 

in the left or right half of the “active set” 

– after subdividing           times, return support 

[Arias-Castro, Candès, and Davenport - 2011] 



Phase Transition in the Posterior 

[Arias-Castro, Candès, and Davenport - 2011] 



Phase Transition in the MSE 

[Arias-Castro, Candès, and Davenport - 2011] 



Conclusions 

• In some scenarios, CS can be sensitive to noise 

– inherent lower bound that applies to any possible sensing 

scheme 

– if you can average out noise, that will always help 

– sparsity is still helping a lot 

 

• Surprisingly, adaptive algorithms cannot overcome this 

obstacle! 

 

• Adaptivity might still be very useful in practice  

– practical adaptive algorithms that achieve the minimax rate 

for all values of     ? 


