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[ How well can we estimate x ? ]




Applications

e Statistics

- model selection / variable selection in high-dimensional
regression

e Inverse problems

e Compressive sensing (CS)
- matrix ® represents a sensing system
- typically underdetermined
- sparsity acts as a regularizer



Core Challenges in CS

e How should we design the matrix ® so that M is as small
as possible?
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« How can we recover x from the measurements vy ?



Answers

e Choose a random matrix

- fill out the entries of ® with i.i.d. samples from a sub-
Gaussian distribution

- project onto a “random subspace”

M = O(Slog(N/S)) < N

e Use any sparse approximation algorithm

[ Is this the best we can do? ]




Recovery from Noisy Measurements

Given y = ®x+e or y = ®(x+n),
find =

e Optimization-based methods
- basis pursuit, basis pursuit de-noising, Dantzig selector

T = argmin ||z|;
rERN

st Jly — ®zll2 <€

o Greedy/lterative algorithms
- OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT, ...



Stable Sighal Recovery

Suppose that we observe y = ®x + e and that ® satisfies the
RIP of order 25.

(=)l <02l < (1 +0)el} el <25 |

Typical (worst-case) guarantee

[ 16— l3 < Clel ]

Even if A = supp(x) is provided by an oracle, the error can
still be as large as ||z — z||3 = [le]|3/(1 —§) .



Stable Sighal Recovery: Part Il

Suppose now that ® satisfies

A=)l < B2l < AL +0) ol ol <25 |

In this case our guarantee becomes

. C
[ 7~ 2l3 < el ]

. R N
Unit-norm rows ‘ |z —z||5 < CMHGH%




Expected Performance

o Worst-case bounds can be pessimistic

 What about the average error?
- assume e is white noise with variance &2

E (Jlellz) = Mo~

- for (nonadaptive) oracle
< So?
= A1 - 9)

- if e is Gaussian, then for ¢, -minimization

E (|7 - z2)

/

E (|z —z|3) < ZSJQ log N



Can We Do Better?

o Better choice of ¢ ?
e Better recovery algorithm?

Assume we have a budget for || ®||%.

If we knew the support of x a priori, then by adapting ® to
exploit this knowledge we could achieve

s |
El7=2l] ~ jgE S < g

Is there any way to match this performance without knowing
the support of = in advance?

R} (®) =inf sup E|[[|Z(Pz+e)— x||3]
T lzllo<s



No!

ﬁeorem: \

If y=®z+ ewithe ~ N(0,0°1), then
N
[kl
If y = ®(x + n) with n ~ N(0,0%I), then

R* (D) > C——So2log(N/S).

x N o 9
\ R (®) > OMSO' log(N/S). /

O=USV* =X Wy =V +V'n |V|i=M

See also: Raskutti, Wainwright, and Yu (2009)
Ye and Zhang (2010)

[Candes and Davenport - 2011]



Intuition

Suppose that y =z +e withe ~ AN(0,7) and that S = 1.

R . (I) > Clog(N).

= /log N el = O (V/log V)
| 1., ] ‘ 11 ]




Proof Recipe

Ingredients [Makes o° = 1 servings]

« Lemma 1: Suppose X is a set of S-sparse points such that
T; — :1:j||2 > 8NR! (<I>) for all z;,z; € X,
Then 510g|/'\f! 1< 2\X|2 sz ||(I)x% (I)xJHQ

« Lemma 2: There exists a set X of S-sparse points such that

‘ /"*7|=(N/5)S/4
o ||z — x|l > 5 forall z;,z; € X
iy s wix ——I||< 2 for some 3 > 0

Instructions
Combine ingredients and add a dash of linear algebra.



Proof Outline

=2t Q= i vidl
7108(N/8) =2 < By 5 |02 — By 3

— Tr ((I)*q) (\?f% Zzg(% —xj)(z; — xﬂ)*))
= Tr (*D (2(Q — pp™)))

< 2Tr (&*PQ)

< 2Tr (0*®) || Q)|

< 2@} - 16R;,.,(®)(1+ 5)

) Slog(N/S)
_— ()2 0y el




Recall: Lemma 2

Lemma 2: There exists a set X of S-sparse points such that
» |X] = (N/S)%/H
. ‘GCZ —ZlZ‘jHQ > % for all Ti, Tj € X

*

Strategy
Construct X by sampling (with replacement) from

U = {:1: e {0,/1/8, —/1/SWN : ||z|lo < S}
Repeat for |X| = (V/S)%/% iterations.
With probability > 0, the remaining properties are satisfied.

Key: Matrix Bernstein Inequality [Ahlswede and Winter, 2002]



Recap

Noise added to the measurements

E[|z—=z|3] <C 15[ So?log N
S N
E [ - ]3] > O 502 log(N/S)
121

Noise added to the signal
N
E[|z—=z|3] < C”MSGQ log N

N
E[|lz —=]3] > C--S0” log(N/S)



Noise Folding

— 3dB per octave
- == =Oracle CS 1
CoSaMP CS : | . |
1 2 3 4 5 6 7
logy (N/M)

[Davenport, Laska, Treichler, and Baraniuk - 2011]



Adaptivity to the Rescue?

What if we adapt the measurements to the particular signal?

) — AN

If we are too greedy, our support estimate might be wrong...

[ Does adaptivity really help? ]




Sometimes...

e Information-based complexity: “Adaptivity doesn’t help!”
- assumes signal x lies in a set K satisfying certain conditions
- noise-free measurements
- adaptivity reduces minimax error over K by at most 2

e Nevertheless, adaptivity can still help [Indyk et al. - 2011]
- reduced number of measurements in a probabilistic setting
- still requires noise-free measurements

« What about noise?
- distilled sensing (Haupt, Castro, Nowak, and others)
- message seems to be that adaptivity really helps in noise



Adaptive Compressive Sensing

Suppose we have a budget of M/ measurements of the form
yi = (i, ) + €
where ||¢;|l =1 and e; ~ N(0,0?).

The vector ¢; can have an arbitrary (but deterministic)
dependence on the measurements y1,42,---,¥i—1-

Consider the minimax MSE

R: ., =inf sup E [Hf(q)x +e) — x||%]
T |lxl[o<S



Main Result

Possibilities include

« Adaptive oracle rate: R’ =~ %802
. * N 2

« Nonadaptive rate: R = MSO‘ log(N/S)

e Somewhere in-between?
~ N
[ R;knm Z CMSO'Q J

[ In general, adaptivity does not significantly help!! ]

[Arias-Castro, Candes, and Davenport - 2011]



Step 1:

Step 2:

Step 3:

Underlying ldeas

Consider sparse signals with nonzeros of amplitude
uw=+/N/M.

Show that if you have fewer than M measurements,
then with high probability you will fail to recover a
significant fraction of the support.

Immediately translate this into a lower bound on the
MSE.

[Arias-Castro, Candes, and Davenport - 2011]



Adaptivity in Practice
Suppose that S =1 and that =~ = L.

Algorithm 1 [Castro et al. - 2008]
- start with random (Rademacher) measurements
- after each measurement, compute posterior distribution p
- re-weight subsequent measurements using p

Algorithm 2 [Iwen and Tewfik - 2011]
- split measurements into log NV stages

- in each stage, use measurements to decide if the nonzero is
in the left or right half of the “active set”

- after subdividing log NV times, return support

[Arias-Castro, Candes, and Davenport - 2011]
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Phase Transition in the Posterior

r_.r_o_—_!-—-i-:-,-io0oooto
‘

20 40 60
T

Pij*
A= ]
maxX g+ Pj
10" :
10° :
) §
;
10" 4
4
e *
8= ¢ ¥ . .
0 20 40 60
m
2 __
n=>512 o =1

[Arias-Castro, Candes, and Davenport - 2011]



MSE

Phase Transition in the MSE
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o
- n =512
o =1
mg = 128
m. = 128




Conclusions

e |n some scenarios, CS can be sensitive to noise

- inherent lower bound that applies to any possible sensing
scheme

- if you can average out noise, that will always help
- sparsity is still helping a lot

o Surprisingly, adaptive algorithms cannot overcome this
obstacle!

o Adaptivity might still be very useful in practice

- practical adaptive algorithms that achieve the minimax rate
for all values of wu ?



