How well can we estimate a sparse vector?

Mark A. Davenport
Stanford University
Department of Statistics
Sparse Estimation

$M \times 1 \Phi \rightarrow N \times 1$

$M \times N$

How well can we estimate x?
Applications

• Statistics
 - model selection / variable selection in high-dimensional regression

• Inverse problems

• Compressive sensing (CS)
 - matrix Φ represents a sensing system
 - typically underdetermined
 - sparsity acts as a regularizer
Core Challenges in CS

- How should we design the matrix Φ so that M is as small as possible?

$$y = \Phi \Psi \alpha$$

- How can we recover x from the measurements y?
Answers

• Choose a *random matrix*
 - fill out the entries of Φ with i.i.d. samples from a sub-Gaussian distribution
 - project onto a “random subspace”

\[
M = O(S \log(N/S)) \ll N
\]

• Use any sparse approximation algorithm

Is this the best we can do?
Recovery from Noisy Measurements

Given \(y = \Phi x + e \) or \(y = \Phi(x + n) \), find \(x \)

- **Optimization-based methods**
 - basis pursuit, basis pursuit de-noising, Dantzig selector

\[
\hat{x} = \arg\min_{x \in \mathbb{R}^N} \|x\|_1 \\
\text{s.t. } \|y - \Phi x\|_2 \leq \epsilon
\]

- **Greedy/Iterative algorithms**
 - OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT, ...
Stable Signal Recovery

Suppose that we observe \(y = \Phi x + e \) and that \(\Phi \) satisfies the RIP of order \(2S \).

\[
(1 - \delta) \| x \|_2^2 \leq \| \Phi x \|_2^2 \leq (1 + \delta) \| x \|_2^2 \quad \| x \|_0 \leq 2S
\]

Typical (worst-case) guarantee

\[
\| \hat{x} - x \|_2^2 \leq C \| e \|_2^2
\]

Even if \(\Lambda = \text{supp}(x) \) is provided by an oracle, the error can still be as large as \(\| \hat{x} - x \|_2^2 = \| e \|_2^2 / (1 - \delta) \).
Suppose now that Φ satisfies

$$A(1 - \delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq A(1 + \delta)\|x\|_2^2$$

In this case our guarantee becomes

$$\|\hat{x} - x\|_2^2 \leq \frac{C}{A} \|e\|_2^2$$

Unit-norm rows

$$\|\hat{x} - x\|_2^2 \leq C \frac{N}{M} \|e\|_2^2$$
Expected Performance

- Worst-case bounds can be pessimistic

- What about the *average* error?
 - assume e is white noise with variance σ^2
 \[
 \mathbb{E} \left(\| e \|^2_2 \right) = M \sigma^2
 \]
 - for (nonadaptive) oracle
 \[
 \mathbb{E} \left(\| \hat{x} - x \|^2_2 \right) \leq \frac{S \sigma^2}{A(1 - \delta)}
 \]
 - if e is Gaussian, then for ℓ_1-minimization
 \[
 \mathbb{E} \left(\| \hat{x} - x \|^2_2 \right) \leq \frac{C'}{A} S \sigma^2 \log N
 \]
Can We Do Better?

- Better choice of Φ?
- Better recovery algorithm?

Assume we have a budget for $\|\Phi\|^2_F$.

If we knew the support of x \textit{a priori}, then by adapting Φ to exploit this knowledge we could achieve

$$\mathbb{E} \left[\|\hat{x} - x\|^2_2 \right] \approx \frac{S}{\|\Phi\|^2_F} S \sigma^2 \ll C' \frac{N}{\|\Phi\|^2_F} S \sigma^2 \log N$$

Is there any way to match this performance without knowing the support of x in advance?

$$R^*_{mm}(\Phi) = \inf_{\hat{x}} \sup_{\|x\|_0 \leq S} \mathbb{E} \left[\|\hat{x}(\Phi x + e) - x\|^2_2 \right]$$
Theorem:

If $y = \Phi x + e$ with $e \sim \mathcal{N}(0, \sigma^2 I)$, then

$$R_{mm}^*(\Phi) \geq C\frac{N}{\|\Phi\|_F^2} S\sigma^2 \log(N/S).$$

If $y = \Phi(x + n)$ with $n \sim \mathcal{N}(0, \sigma^2 I)$, then

$$R_{mm}^*(\Phi) \geq C\frac{N}{M} S\sigma^2 \log(N/S).$$

$\Phi = U\Sigma V^*$ \quad $y' = \Sigma^{-1}U^*y = V^*x + V^*n$ \quad $\|V^*\|_F^2 = M$

See also: Raskutti, Wainwright, and Yu (2009)
Ye and Zhang (2010)
Suppose that $y = x + e$ with $e \sim \mathcal{N}(0, I)$ and that $S = 1$.

$$R^*_{mm}(I) \geq C \log(N).$$

$$\mu = \sqrt{\log N}$$

$$\|e\|_{\infty} = O\left(\sqrt{\log N}\right)$$
Proof Recipe

Ingredients [Makes $\sigma^2 = 1$ servings]

• Lemma 1: Suppose \mathcal{X} is a set of S-sparse points such that
 \[\|x_i - x_j\|_2^2 \geq 8NR_{mm}^*(\Phi) \] for all $x_i, x_j \in \mathcal{X}$.
 Then \[\frac{1}{2} \log |\mathcal{X}| - 1 \leq \frac{1}{2|\mathcal{X}|^2} \sum_{i,j} \|\Phi x_i - \Phi x_j\|_2^2. \]

• Lemma 2: There exists a set \mathcal{X} of S-sparse points such that
 • $|\mathcal{X}| = (N/S)^{S/4}$
 • $\|x_i - x_j\|_2 \geq \frac{1}{2}$ for all $x_i, x_j \in \mathcal{X}$
 • $\| \frac{1}{|\mathcal{X}|} \sum_i x_i x_i^* - \frac{1}{N} I \| \leq \frac{\beta}{N}$ for some $\beta > 0$

Instructions

Combine ingredients and add a dash of linear algebra.
Proof Outline

\[\mu = \frac{1}{|x|} \sum_i x_i \quad Q = \frac{1}{|x|} \sum_i x_i x_i^* \]

\[\frac{S}{4} \log(N/S) - 2 \leq \frac{1}{|x|^2} \sum_{i,j} \| \Phi x_i - \Phi x_j \|_2^2 \]

\[= \text{Tr} \left(\Phi^* \Phi \left(\frac{1}{|x|^2} \sum_{i,j} (x_i - x_j)(x_i - x_j)^* \right) \right) \]

\[= \text{Tr} \left(\Phi^* \Phi \left(2(Q - \mu \mu^*) \right) \right) \]

\[\leq 2\text{Tr} \left(\Phi^* \Phi Q \right) \]

\[\leq 2\text{Tr} \left(\Phi^* \Phi \right) \|Q\| \]

\[\leq 2\|\Phi\|_F^2 \cdot 16R_{mm}^*(\Phi)(1 + \beta) \]

\[R_{mm}^*(\Phi) \geq \frac{S \log(N/S)}{128(1 + \beta)\|\Phi\|_F^2} \]
Recall: Lemma 2

Lemma 2: There exists a set \mathcal{X} of S-sparse points such that

- $|\mathcal{X}| = (N/S)^{S/4}$
- $\|x_i - x_j\|_2 \geq \frac{1}{2}$ for all $x_i, x_j \in \mathcal{X}$
- $\left\| \frac{1}{|\mathcal{X}|} \sum_i x_i x_i^* - \frac{1}{N} I \right\| \leq \frac{\beta}{N}$ for some $\beta > 0$

Strategy

Construct \mathcal{X} by sampling (with replacement) from

$$\mathcal{U} = \left\{ x \in \{0, \sqrt{1/S}, -\sqrt{1/S}\}^N : \|x\|_0 \leq S \right\}$$

Repeat for $|\mathcal{X}| = (N/S)^{S/4}$ iterations.

With probability > 0, the remaining properties are satisfied.

Key: Matrix Bernstein Inequality [Ahlswede and Winter, 2002]
Recap

Noise added to the *measurements*

\[
\mathbb{E} \left[\| \hat{x} - x \|^2_2 \right] \leq C' \frac{N}{\| \Phi \|^2_F} S \sigma^2 \log N
\]

\[
\mathbb{E} \left[\| \hat{x} - x \|^2_2 \right] \geq C \frac{N}{\| \Phi \|^2_F} S \sigma^2 \log(N/S)
\]

Noise added to the *signal*

\[
\mathbb{E} \left[\| \hat{x} - x \|^2_2 \right] \leq C' \frac{N}{M} S \sigma^2 \log N
\]

\[
\mathbb{E} \left[\| \hat{x} - x \|^2_2 \right] \geq C \frac{N}{M} S \sigma^2 \log(N/S)
\]
Noise Folding

[SnR (dB)]

\[\log_2 \left(\frac{N}{M} \right) \]

[Davenport, Laska, Treichler, and Baraniuk - 2011]
Adaptivity to the Rescue?

What if we adapt the measurements to the particular signal?

If we are too greedy, our support estimate might be wrong...

Does adaptivity really help?
Sometimes...

- Information-based complexity: “Adaptivity doesn’t help!”
 - assumes signal x lies in a set K satisfying certain conditions
 - noise-free measurements
 - adaptivity reduces minimax error over K by at most 2

- Nevertheless, adaptivity can still help [Indyk et al. - 2011]
 - reduced number of measurements in a probabilistic setting
 - still requires noise-free measurements

- What about noise?
 - distilled sensing (Haupt, Castro, Nowak, and others)
 - message seems to be that adaptivity really helps in noise
Adaptive Compressive Sensing

Suppose we have a budget of M measurements of the form

$$y_i = \langle \phi_i, x \rangle + e_i$$

where $\|\phi_i\|_2 = 1$ and $e_i \sim \mathcal{N}(0, \sigma^2)$.

The vector ϕ_i can have an arbitrary (but deterministic) dependence on the measurements $y_1, y_2, \ldots, y_{i-1}$.

Consider the minimax MSE

$$R^*_\text{mm} = \inf_{\hat{x}} \sup_{\|x\|_0 \leq S} \mathbb{E} \left[\| \hat{x}(\Phi x + e) - x \|_2^2 \right]$$
Possibilities include

- Adaptive oracle rate: \(R_{mm}^* \approx \frac{S}{M} S \sigma^2 \)
- Nonadaptive rate: \(R_{mm}^* \approx \frac{N}{M} S \sigma^2 \log(N/S) \)
- Somewhere in-between?

\[R_{mm}^* \geq \tilde{C} \frac{N}{M} S \sigma^2 \]

In general, adaptivity does \textbf{not} significantly help!!

[Arias-Castro, Candès, and Davenport - 2011]
Underlying Ideas

Step 1: Consider sparse signals with nonzeros of amplitude

\[\mu = \sqrt{N/M}. \]

Step 2: Show that if you have fewer than \(M \) measurements, then with high probability you will fail to recover a significant fraction of the support.

Step 3: Immediately translate this into a lower bound on the MSE.

[Arias-Castro, Candès, and Davenport - 2011]
Adaptivity in Practice

Suppose that $S = 1$ and that $x_{j^*} = \mu$.

Algorithm 1 [Castro et al. - 2008]
- start with random (Rademacher) measurements
- after each measurement, compute posterior distribution p
- re-weight subsequent measurements using p

Algorithm 2 [Iwen and Tewfik - 2011]
- split measurements into $\log N$ stages
- in each stage, use measurements to decide if the nonzero is in the left or right half of the “active set”
- after subdividing $\log N$ times, return support

[Arias-Castro, Candès, and Davenport - 2011]
Phase Transition in the Posterior

\[\lambda = \frac{p_{j^*}}{\max_{j \neq j^*} p_j} \]

\[n = 512 \quad \sigma^2 = 1 \]

[Arias-Castro, Candès, and Davenport - 2011]
Phase Transition in the MSE

\[n = 512 \]
\[\sigma^2 = 1 \]
\[m_d = 128 \]
\[m_e = 128 \]

[![Phase Transition in the MSE](image-url)](image-url)

[Arias-Castro, Candès, and Davenport - 2011]
Conclusions

• In some scenarios, CS can be sensitive to noise
 - inherent lower bound that applies to any possible sensing scheme
 - if you can average out noise, that will always help
 - sparsity is still helping a lot

• Surprisingly, adaptive algorithms cannot overcome this obstacle!

• Adaptivity might still be very useful in practice
 - practical adaptive algorithms that achieve the minimax rate for all values of μ?