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When (and how well) can we
estimate x from the measurements y?
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Compressive sensing
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 How should we design A to ensure that y contains as much
information about x as possible?

« What algorithms do we have for recovering x from y ?



How to design A?

Prototypical sensing model:

y = Ax + 2 z ~ N(0,0°%1)

Constrain A to have unit-norm rows

Pick A at random!
- i.i.d. Gaussian entries (with variance 1/n )
- random rows from a unitary matrix

As long as m = O(klog(n/k)), with high probability a
random A will satisfy the restricted isometry property

Deep connections with Johnson-Lindenstrauss Lemma



How to recover x ?

e Lots and lots of algorithms
- {1-minimization
- greedy algorithms (matching pursuit, CoSaMP, IHT)

If A satisfies the RIP, ||z|lo < k, and \
y = Ax + z with z ~ N(0,0°I), then

T = argmin ||z[|
:B’ER”

s.t. ||A%(y — A2")||so < c/logno

satisfies
E|z — |2 < C-2ko?logn.
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Room for improvement?
There exists matrices A such that for any (sparse) x we have

E|z—z|2 < C—ko?logn.
m

yi = (@i, T) + 2i
A

a; and x are almost orthogonal

« We are using most of our “sensing power” to sense entries
that aren’t even there!

e Tremendous loss in signal-to-noise ratio (SNR)

e It’s hard to imagine any way to avoid this...



Can we do better?

ﬁ' heorem \

For any matrix A (with unit-norm rows) and any
recovery procedure 7, there exists an x with||z||o < k
such that if y = Az + z with z ~ N(0,0°I), then

~ n
E|z(y) — z||3 > C'—ko” log(n/k).

o - /

Compressive sensing is already operating at the limit

[Candes and Davenport (2013)]



Intuition

Suppose that y = = + z with z ~ A(0,1) and that £ =1

E||Z(y) — =ll3 > C"logn
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Adaptive Sensing




Adaptive sensing

Think of sensing as a game of 20 questions
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Adaptive sensing

Think of sensing as a game of 20 questions
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Simple strategy: Use m /2 measurements to find the support,
and the remainder to estimate the values.



Thought experiment

Suppose that after m /2 measurements we have perfectly
estimated the support.

m/2k< i
= l' u a0+

 Sunfls
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E(z;, —x;)° = Ea N

. 2k
E|z—z|5 = —ko’< %k’aQ log n
m



Does adaptivity really help?

Sometimes...

e Noise-free measurements, but non-sparse signal
- adaptivity doesn’t help if you want a uniform guarantee

- probabilistic adaptive algorithms can reduce the required
number of measurements from O(klog(n/k)) to
O(kloglog(n/k)) [Indyk et al. - 2011]

e Noisy setting
- distilled sensing [Haupt et al. - 2007, 2010]
- adaptivity can reduce the estimation error to

E|7—z|2 = Zko?
m™m
Which is it?
E |z — x||g — —ko?
T



Which is it?

Suppose we have a budget of m measurements of the form
yi = (a;, ) + z; where ||a;||2 = 1 and z; ~ N(0,0?)

The vector a; can have an arbitrary dependence on the
measurement history, i.e., (a1,v1),-.., (@Gi—1,Yi—1)

4heorem \

There exist x with ||z|lo < k such that for any adaptive
measurement strategy and any recovery procedure Z,

T
EllZ(y) — 2|2 > C—ko?.
3(y) - ll3 > O ko

Qhus, in general, adaptivity does not significantly helw

[Arias-Castro, Candes, and Davenport (2013)]



Proof strategy

Step 1: Consider a prior on sparse signals with nonzeros of
amplitude y ~ o+/n/m

Step 2: Show that if given a budget of m measurements,
you cannot detect the support very well

Step 3: Immediately translate this into a lower bound on the
MSE

To make things simpler, we will consider a Bernoulli prior
7(x) instead of a uniform k-sparse prior:

0 with probability 1 — k/n
T; =
’ >0 with probability k/n



Proof of main result

let S={j:z; #0}andset o° =1
For any estimator Z, define S := {j : z;| > 1/2}

Whenever j € S\ S or j € S\ S, [z; — x| > p1/2

2 R 2 2
|2 —2l3 = 515\ 81+ 515\ 5| = =SS

Pooa
) E|i- |3 > E|SAS]



Proof of main result

[Lemma R )
Under the Bernoulli prior, any estimate S satisfies
E|SAS] zk(l—g T).
n
\§ /
Thus, E |7 — 2|2 > i | SAS]

Plug in = £,/2 and this reduces to

4 kn 1 kn
Elz — 2lI2 > : -2
[ 33||2_27 — 2
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Adaptivity in Practice




Adaptive imaging

© MIT Tech Review

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk (2008)]



Incredibly simplified model

Suppose that £ =1 and that z;« =
Our goal is to find 7" and estimate p

We will assume a fixed budget of time available for sensing

- rather than forcing ourselves to use m equally weighted rows
we simply require that the total energy in the (adaptively
chosen) sensing matrix is fixed

We will split our “energy budget” into two phases
1. ldentify j* via compressive binary search

2. Estimate the value of u by directly sampling it with the
remaining sensing energy



Compressive binary search

« Split measurements into l0g> n stages

e In each stage, use some of the “sensing energy” to
determine if the nonzero is on the “left” or “right” of the
active set

« After subdividing l0g, n times, return estimated location

[lIwen and Tewfik (2011), Davenport and Arias-Castro (2012), Malloy and Nowak (2012)]



Experimental results

[Arias-Castro, Candes, and Davenport (2013)]



Conclusions

Our lower bound shows that no method can find the
location of the nonzero when £ ~ /=

o)

With careful allocation of the energy budget across the
stages, compressive binary search will succeed with high

probability provided g > 4\/%

By randomly splitting the image into smaller sets and
iteratively applying the compressive binary search idea, we
can extend this approach to k-sparse signals

Open questions
- noise models for low-light imaging
- alternative sparsity models
- alternative measurement models



Thank You!



