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Ye Olde Data Deluge

/“Paper became so cheap, and\
printers so numerous, that a
deluge of authors covered

the land”

\ Alexander Pope, 1728)




Large Hadron Collider at CERN

Compact Muon Solenoid detector

320 terabits per second raw data

Stop-gap: perform ad-hoc triage
to 800 Gbps, recording only
“interesting events”



Data Deluge Challenges

\_

How can we avoid
having to acquire so
much data to begin with?

J

can we extrac

amount of data

!

How can we extract any
information at all from
a massive amount of

L ) ,
_ high-dimensional data? y




Low-Dimensional Structure

-

How can we exploit low-dimensional
structure to address the challenges
posed by the “data deluge”?

~N

Visualization

Feature extraction/selection

Compression

Regularization of ill-posed inverse problems
Underpins compressive sensing



Compressive Sensing

Replace samples with general linear measurements

y=Azx

n X 1
sampled

sighal

m X 1
measurements

k-sparse

[Donoho; Candes, Romberg, and Tao - 2004]
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Compressive Sensing

Y A T z
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m X n N
m <Kn H
n ;< 1
k-sparse

When (and how well) can we
estimate x from the measurements y?




Background on )

Compressive Sensing )




Compressive Sensing

A

N

Y

support
- values

k nonzeros

 How should we design A to ensure that y contains as much
information about x as possible?

« What algorithms do we have for recovering x from y ?



How To Design A ?

Prototypical sensing model:

y = Ax + 2 z ~ N(0,0°%1)

e Constrain A to have unit-norm rows

e Pick A at random!

- i.i.d. Gaussian entries (with variance 1/n )
- random rows from a unitary matrix

e Aslong as m = O(klog(n/k)), with high probability a
random A will satisfy the restricted isometry property



Restricted Isometry Property (RIP)
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How To Design A ?

Prototypical sensing model:

y = Ax + 2 z ~ N(0,0°%1)

Constrain A to have unit-norm rows

Pick A at random!
- i.i.d. Gaussian entries (with variance 1/n )
- random rows from a unitary matrix

As long as m = O(klog(n/k)), with high probability a
random A will satisfy the restricted isometry property

Deep connections with Johnson-Lindenstrauss Lemma
- see Baraniuk, Davenport, DeVore, and Wakin (2008)



“Single-Pixel Camera”

© MIT Tech Review

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, and Baraniuk - 2008]



Compressive Analog-to-Digital Converters

Random Demodulator

/ Integrator Sample-and-Hold Quantizer \
x(t) X pe(t)

pa(t)

Pseudorandom
Number |« Seed

\ Generator /

X(f) 4

>
f

[Tropp, Laska, Duarte, Romberg, and Baraniuk - 2010]



Compressive Analog-to-Digital Converters

Random Demodulator
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Compressive Analog-to-Digital Converters

Compressive Multiplexor

/Y; RE | o (1) —(X) \
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Single
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The “—1" Bank

[Slavinsky, Laska, Davenport, and Baraniuk - 2011]



How To Recover x?

e Lots and lots of algorithms
- f/1-minimization
- greedy algorithms (matching pursuit, CoSaMP, IHT)

If A satisfies the RIP, ||z]jo < k, and \
y = Ax + z with z ~ N(0,0°I), then

T = argmin ||z[|
:L"ER”

s.t. JA*(y — Ax')||s < c/logno

satisfies

\_

E|z — |2 < O ko?logn.

m
[Candes and Tao - ZOOSy




Room For Improvement?
There exists matrices A such that for any (sparse) x we have

E |z —z||3 < O~ ko? log n.
m

yi = (@i, T) + 2i
A

a; and x are almost orthogonal

« We are using most of our “sensing power” to sense entries
that aren’t even there!

e Tremendous loss in signal-to-noise ratio (SNR)

e It’s hard to imagine any way to avoid this...



Can We Do Better?

ﬁ' heorem \

For any matrix A (with unit-norm rows) and any
recovery procedure z, there exists an x with||z||o < k
such that if y = Az + z with z ~ NV (0,0%I), then

E|Z(y) — z|3 > c’%kaz log(n/k).
\_ Y,

Compressive sensing is already operating at the limit

Proof ingredients:
e construct unfavorable prior: Matrix Bernstein inequality
* use Fano’s inequality to show that Bayes risk is large

[Candes and Davenport - 2011]



Adaptive Sensing




Adaptive Sensing

Think of sensing as a game of 20 questions

. P

m =

Simple strategy: Use m /2 measurements to find the support,
and the remainder to estimate the values.



Thought Experiment

Suppose that after m /2 measurements we have perfectly
estimated the support.

m/2k< i
= l' u H +

 Sunfls

%, .

E(z; —x;)° = Ea N

. 2k
E|z—z|5 = —ko’< %kaQ log n
m



Does Adaptivity Really Help?

Sometimes...

e Noise-free measurements, but non-sparse signal
- adaptivity doesn’t help if you want a uniform guarantee

- probabilistic adaptive algorithms can reduce the required
number of measurements from O(klog(n/k)) to
O(kloglog(n/k)) [Indyk et al. - 2011]

e Noisy setting
- distilled sensing [Haupt et al. - 2007, 2010]
- adaptivity can reduce the estimation error to

E|7—z|2 = Zko?
m > Which is it?
~ k ’
E||z—z|3 = —ko”
m



Which Is It?

Suppose we have a budget of m measurements of the form
Y; = <CL@',ZC> + z; where HCLZHQ =1 and z; ~ N(O,O‘Z)

The vector a; can have an arbitrary dependence on the
measurement history, i.e., (a1,v1),-.., (@Gi—1,Yi—1)

m'neorem \

There exist x with ||z|lo < k such that for any adaptive
measurement strategy and any recovery procedure Z,

Elz(y) — 212 > 0 ko,
[£w) — 2l3 > O ko

Qhus, in general, adaptivity does not significantly helw

[Arias-Castro, Candes, and Davenport - 2011]



Proof Strategy

Step 1: Consider sparse sighals with nonzeros of amplitude
w=o\/n/m

Step 2: Show that if given a budget of m measurements,
you cannot detect the support very well

Step 3: Immediately translate this into a lower bound on the
MSE

To make things simpler, we will consider a Bernoulli prior
7(x) instead of a uniform k-sparse prior:

0 with probability 1 — k/n
T; =
’ pn >0 with probability k/n



Proof of Main Result

Let S={j:z; #0}and set o =1
For any estimator Z, define S := {j : z;| > 1/2}

Whenever j € S\ S or j € S\ S, |z; —x;] > 11/2

2 2 2
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|2 —xl3 2 515\ 51+ IS\ 5| = £-1SAs

B g
) E|j7 -z} > E|SAS]



Proof of Main Result

/Lemma R )
Under the Bernoulli prior, any estimate S satisfies
E@Aﬂzk<1g m).
mn
- /

2
Thus, E||7 — 22 > “ZE|SAS|
2
L2 e [m
4 2V n

Plug in = £,/2 and this reduces to
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Key ldeas in Proof of Lemma

Po,i (Y15 Ym) = P(y1, - .. ym|z; = 0)
]P)l,j(yla s 7y’m) — I[D(yla O aym|xj — /U,)

A~ k
E|SAS| > — Z(l—HPU Po,;llTv)

>k——\/zﬂm Po.; |2y

2
; IP1; = Pollty < ~-m wmmp E|SAS| > k (1 - £, /g>



Key ldeas in Proof of Lemma

4 )
Pinsker’s Inequality
IP - Qv < VE(P,Q)/2
g W,
T 70
Py — PojllFy < ?OK(IPUJ?IEDl i)+ %K(Pl i+ Poj)
2
H 2
< a4 ZEG%’,J

2

2
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Adaptivity In Practice
Suppose that £ =1 and that z;« =

Recursive Bisection [Iwen and Tewfik - 2011]
- split measurements into logn stages

- in each stage, use measurements to decide if the nonzero is
in the left or right half of the “active set”

- after subdividing logn times, return support

LITTT LT
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Adaptivity In Practice
Suppose that £ =1 and that z;« =

Recursive Bisection [Iwen and Tewfik - 2011]
- split measurements into logn stages

- in each stage, use measurements to decide if the nonzero is
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Adaptivity In Practice
Suppose that £ =1 and that z;« =

Recursive Bisection [Iwen and Tewfik - 2011]
- split measurements into logn stages

- in each stage, use measurements to decide if the nonzero is
in the left or right half of the “active set”

- after subdividing logn times, return support




Experimental Results

[Arias-Castro, Candes, and Davenport - 2011]



Looking Forward




Adaptivity in Practice

Sharp bounds to differentiate the regions where adaptivity
helps and where it doesn’t

Practical algorithms that work well for all values of u

New theory for restricted adaptive measurements

- single-pixel camera: 0/1 measurements

- magnetic resonance imaging (MRIl): Fourier measurements
- analog-to-digital converters: linear filter measurements

New sensors and architectures that can actually acquire
adaptive measurements



Beyond Recovery

When and how can we directly solve inference problems
directly from measurements?

} —»| Target Detection

—p| Target Tracking
= e L
Compressive =¥

measurement system

Signal Identification

Signal Recovery

e “Compressive signal processing”

e Links with machine learning
- Johnson-Lindenstrauss lemma and geometry preservation
- quantized compressive sensing and logistic regression



Beyond Sparsity

Learned dictionaries, structured sparsity, models for
continuous-time signals

Multi-signal models
- e.g., sensor networks/arrays, multi-modal data, ...

o Low-rank matrix models G L
e Manifold/parametric models
4 . N N [ )
Acquisition Recovery Inference
- how to design A « practical algorithms « classification
 practical devices * robust « estimation
« adaptivit « stable  learnin
Y ) U J 5
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