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Sensor Explosion
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2012 Math Awareness Month

Mathematics, Statistics, and the Data Deluge
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Ye Olde Data Deluge

/“Paper became so cheap, and\
printers so numerous, that a
deluge of authors covered

the land”

\ Alexander Pope, 1728/




Large Hadron Collider at CERN

Muon
Electron
Charged Hadron (e.g. Pion)
— = — - Neutral Hadron (e.g. Neutron

Compact Muon Solenoid detector

320 terabits per second raw data

Stop-gap: perform ad-hoc triage
to 800 Gbps, recording only
“interesting events”



Digital Revolution

-

“If we sample a signal at twice its highest
frequency, then we can recover it exactly.”

Whittaker-Nyquist-Kotelnikov-Shannon )




Data, Data Everywhere...

Do we really need so many samples?

Most natural signals have simple characterizations



Simplicity Through History

(" o )
“Entities must not be
multiplied unnecessarily”

L -William of Occam >
T : )

Simplicity is the ultimate
sophistication”
-L do da Vinci

9 eonardo da ]nCl)

N

-
“Make everything as simple

as possible, but not simpler”

S -Albert Einstein y




Simple Signals

e Bandlimited signals AX(H)

-B

e Parametric signals

e Sparse signals o 0é
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Sample-Then-Compress Paradigm

Standard paradigm for digital data acquisition
- sample data
- compress samples

N >S5

‘ 4’[ sample ]—-[ compress H transmlt/store

JPEG
MPEG

o N
receive ]—'[ decompress ]——> ‘

Sample-then-compress paradigm is wasteful




Compressive Sensing

M > S
M <K N M

‘ 4{ measure ]—-[ transmit/store

M N
receive ]—{ reconstruct ]——> ‘



Compressive Sensing

Replace samples with general linear measurements

Y b x
M x 1 N x 1
measurements = sighal
S-sparse

M x N

Core challenges:
- how to design & ?
- how to recover x?

[Donoho; Candes, Romberg, Tao - 2004]
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Sparse Signal Recovery
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Sparse Signal Recovery

<
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System of M equations with /N unknowns
All but S of the unknowns are zero

Goal: Determine which entries are nonzero,
then estimate their values



Sparse Signal Recovery
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Why /4 -Minimization Might Work

T = argmin ||x||;
rERN

s.t. y=Px




Restricted Isometry Property (RIP)
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How to Get an RIP Matrix

Choose a random matrix

- fill out the entries of ® with i.i.d. samples from a sub-
Gaussian distribution

- project onto a “random subspace”

M = O(Slog(N/S)) < N

Many more structured options are now available



Sparse Recovery Guarantees

e Optimization / /; -minimization

e Greedy algorithms

matching pursuit

orthogonal matching pursuit (OMP)

Stagewise OMP (StOMP), regularized OMP (ROMP)
CoSaMP, Subspace Pursuit, IHT, ...

o If ® satisfies the RIP, then any of these algorithms can
successfully recover x



“Single-Pixel Camera”

© MIT Tech Review

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk

- 2008]
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“Single-Pixel Camera”

© MIT Tech Review

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk

- 2008]



Conclusions

e The theory of compressive sensing allows for new sensor
designs, but requires new techniques for signal recovery

e Underdetermined systems of equations with sparse
solutions arise in many other contexts

e “Simplicity” has many incarnations
sparsity
structured sparsity

finite rate of innovation, manifold, parametric models
low-rank matrices



