A Compressive Introduction to Compressive Sensing

Mark A. Davenport

Georgia Institute of Technology School of Electrical and Computer Engineering

Sensor Explosion

Data Deluge

2012 Math Awareness Month

Mathematics, Statistics, and the Data Deluge

Sponsored by the Joint Policy Board for Mathematics—American Mathematical Society, American Statistical Association Mathematical Association of America, Society for Industrial and Applied Mathematics

Ye Olde Data Deluge

"Paper became so cheap, and printers so numerous, that a deluge of authors covered the land"

Alexander Pope, 1728

Large Hadron Collider at CERN

Digital Revolution

"If we sample a signal at twice its highest frequency, then we can recover it exactly."

Whittaker-Nyquist-Kotelnikov-Shannon

Data, Data Everywhere...

Do we *really* need so many samples?

Most *natural* signals have *simple* characterizations

Simplicity Through History

"Entities must not be multiplied unnecessarily" -William of Occam

"Simplicity is the ultimate sophistication" -Leonardo da Vinci

"Make everything as simple as possible, but not simpler" -Albert Einstein

Simple Signals

Npixels

$S \ll N$ large wavelet coefficients

Sample-Then-Compress Paradigm

Standard paradigm for digital data acquisition

- sample data
- compress samples

Sample-then-compress paradigm is *wasteful*

Compressive Sensing

Compressive Sensing

Replace samples with general *linear measurements*

Core challenges:

- how to design Φ ?
- how to recover *x*?

[Donoho; Candès, Romberg, Tao - 2004]

Sparse Signal Recovery

Sparse Signal Recovery

System of M equations with N unknowns

All but S of the unknowns are zero

Goal: Determine which entries are nonzero, then estimate their values

Sparse Signal Recovery

Why ℓ_1 -Minimization Might Work

Restricted Isometry Property (RIP)

How to Get an RIP Matrix

Choose a *random matrix*

- fill out the entries of Φ with i.i.d. samples from a sub-Gaussian distribution
- project onto a "random subspace"

$$M = O(S \log(N/S)) \ll N$$

Many more structured options are now available

Sparse Recovery Guarantees

- Optimization / ℓ_1 -minimization
- Greedy algorithms
 - matching pursuit
 - orthogonal matching pursuit (OMP)
 - Stagewise OMP (StOMP), regularized OMP (ROMP)
 - CoSaMP, Subspace Pursuit, IHT, ...
- If Φ satisfies the RIP, then any of these algorithms can successfully recover \boldsymbol{x}

"Single-Pixel Camera"

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008]

TI Digital Micromirror Device

"Single-Pixel Camera"

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008]

Conclusions

- The theory of compressive sensing allows for new sensor designs, but requires new techniques for signal recovery
- Underdetermined systems of equations with sparse solutions arise in many other contexts
- "Simplicity" has many incarnations
 - sparsity
 - structured sparsity
 - finite rate of innovation, manifold, parametric models
 - low-rank matrices