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Sensor Explosion 



Data Deluge 
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Ye Olde Data Deluge 

“Paper became so cheap, and  

printers so numerous, that a  

deluge of authors covered  

the land” 
 

Alexander Pope, 1728 



Large Hadron Collider at CERN 

Compact Muon Solenoid detector 

 
 320 terabits per second raw data 

 

 Stop-gap: perform ad-hoc triage  

to 800 Gbps, recording only  

“interesting events” 

  



Digital Revolution 

“If we sample a signal at twice its highest    

frequency, then we can recover it exactly.” 

 Whittaker-Nyquist-Kotelnikov-Shannon  



Data, Data Everywhere… 

Do we really need so many samples? 

 

 

 

 

 

 

 

 

 

Most natural signals have simple characterizations 

 

 

 

 

 

 

 

 



Simplicity Through History 

“Entities must not be    

 multiplied unnecessarily” 

  -William of Occam 

“Simplicity is the ultimate    

  sophistication” 
        -Leonardo da Vinci 

“Make everything as  simple 

as possible, but not simpler” 
        -Albert Einstein 



Simple Signals 

• Bandlimited signals 

 

 

 

 

• Parametric signals 

 

 

 

 

• Sparse signals 
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Sample-Then-Compress Paradigm 

Standard paradigm for digital data acquisition 

– sample data 

– compress samples 

 

 

 

 

 

 

 

 

 

Sample-then-compress paradigm is wasteful 

JPEG 

MPEG 

… 

sample compress transmit/store 

receive decompress 



Compressive Sensing 

measure transmit/store 

receive reconstruct 



Compressive Sensing 

Replace samples with general linear measurements  

 

 

 

 

 

 

 

 

Core challenges: 

– how to design     ? 

– how to recover    ? 

 

measurements 

-sparse 

signal 

[Donoho; Candès, Romberg, Tao - 2004] 



Sparse Signal Recovery 



Sparse Signal Recovery 

System of      equations with     unknowns 
 

All but    of the unknowns are zero 
 

Goal: Determine which entries are nonzero,  

 then estimate their values 



Sparse Signal Recovery  

  given              

find   

nonconvex 
NP-Hard 

convex 
linear program 

does not lead 
to sparse 
solutions 



Why     -Minimization Might Work 



Restricted Isometry Property (RIP) 

for all sparse 



How to Get an RIP Matrix 

Choose a random matrix 

– fill out the entries of     with i.i.d. samples from a sub-

Gaussian distribution 

– project onto a “random subspace” 

 

 

 

 

 

 

 

Many more structured options are now available 



Sparse Recovery Guarantees 

• Optimization /    -minimization 
 

• Greedy algorithms 

– matching pursuit 

– orthogonal matching pursuit (OMP) 

– Stagewise OMP (StOMP), regularized OMP (ROMP) 

– CoSaMP, Subspace Pursuit, IHT, … 

 

• If     satisfies the RIP, then any of these algorithms can 

successfully recover 



“Single-Pixel Camera” 

© MIT Tech Review 

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008] 



TI Digital Micromirror Device 



“Single-Pixel Camera” 

© MIT Tech Review 

[Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk - 2008] 



Conclusions 

• The theory of compressive sensing allows for new sensor 

designs, but requires new techniques for signal recovery 
  

• Underdetermined systems of equations with sparse 

solutions arise in many other contexts 
 

• “Simplicity” has many incarnations 

– sparsity 

– structured sparsity 

– finite rate of innovation, manifold, parametric models 

– low-rank matrices 

 


