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Compressive Signal Processing

Random measurements are information scalable

7

\

Target Detection

N

J

7

\

Target Tracking

N

J

Signal Identification

s

; Compressive

measurement system

444

Signal Recovery

N\

S

When and how can we directly solve signal processing
problems directly from compressive measurements?



Example: FM Signals

o Can we directly recover a baseband voice signal without
recovering the modulated waveform?

e Suppose we have compressive measurements of a digital
communication signal (FSK modulated)
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e Can we directly recover the encoded bitstream without
first recovering the measured waveform?



Compressive Likelihood-Ratio Test

e Suppose that we are synchronized and know the exact
carrier frequencies of the signal

« Window measurements according bit-intervals
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Compressive Classification
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Compressive Detection
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Compressive Estimation

« Suppose we wish to estimate (x,¢) fromy = ®(x + n).

e Direct: (y,®()
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Extreme Sparsity

In all these examples, we essentially have S = 1.

All the information we need to solve our problem lies in the
1-dimensional subspace spanned by

- S in the case of detection
- S0 — S11in the case of classification
- { in the case of estimation

We have to make a lot of assumptions for these models to
be relevant...

Can these ideas be generalized?



Sparse Signal Classification

e Suppose Ho 1y = PV
H 1Y = b 1¢
, unknown
: but sparse
H P Y= by PG
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Matched Filters

« We may know what sighals we are looking for, but we may
not know where to look

Hj:x=s5;(t—0;)+n

e Elegant solution:

Matched Filter
Compute (z,5;(t — 0;)) for all ¢, €EEEP zxs;(—

Challenge: Modify the compressive LRT to accommodate
unknown parameters



Matched Filter Geometry

Detection/classification with S unknown

N
articulation parameters ' R
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Images are points in R \\ . (é(

As template articulation

parameters change,

points trace out an

S -dimensional manifold ©

Classify by finding closest target template to data

Matched filter based on generalized likelihood ratio test
= closest manifold search



The Smashed Filter

o Compressive manifold classification with GLRT

- nearest-manifold classifier
- manifolds classified are now ®M

e To stably embed K manifolds
dimension S
- condition number 1/7
- volume V

M = O(KSlog(NV/T))
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Smashed Filter - Experiments

e 3 image classes
- T-72 tank
- schoolbus
- SUV
e Imaged using single-pixel camera with
- unknown shift
- unknown rotation




avg. shift estimate error

Smashed Filter

Random shift and rotation (S = 3 dim. manifold)
AWG noise added to measurements

Goals: identify most likely shift/rotation parameters
identify most likely class
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Putting It All
Together




Compressive Radio Receivers

Example Scenario v ]

e 300 MHz bandwidth 2 iﬁM'

« 5 FM signals (12 kHz) ‘jjj - h o |

« TV station interference R I . B L

« Acquire compressive ~ g
measurements at 30 MHz

(20 x undersampled)
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We must simultaneously solve several problems

detect cancel filter baseband
Y signal known signals of demod signals
energy interferers interest or bitstreams




Energy Detection

We need to identify where in frequency the important signals
are located

Comprressive Estimation: correlate with projected tones

F(k) = [{® cos(27 fxt), y)]
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Filtering

If we have multiple signals, must be able to filter
to isolate and cancel interference
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Unsynchronized Demodulation

We can use a phase-locked-loop (PLL) to track deviations in
frequency by directly operating on compressive
measurements
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Unsynchronized Demodulation

We can use a phase-locked-loop (PLL) to track deviations in
frequency by directly operating on compressive
measurements
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We can directly demodulate signals from compressive
measurements without recovery

[D, Schnelle, Slavinsky, Baraniuk, Wakin, and Boufounos - 2010]



Amplitude

Compressive Domain Demodulation
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Summary

« Compressive signal processing
- integrates sensing, compression, processing
- exploits signal sparsity/compressibility
- enables new sensing modalities, architectures, systems
- exploits randomness at many levels

« Why CSP works: preserves information in signals
with concise geometric structure

sparse signals | manifolds | low-dimensional models

e Information scalability for compressive inference
- compressive measurements ~ sufficient statistics
- much less computation required than for recovery



