Compressive Sensing
Part III: Compressive Sensing in Practice

Mark A. Davenport
Stanford University
Department of Statistics
Important Practical Challenges

• Noise!
 - noisy measurements
 - noisy signals
 - interference

• Quantization
 - quantization error
 - saturation effects

• Good signal models
 - is sparsity sometimes not enough?
 - what dictionaries should we use in practice?
Measurement and Signal Noise
Sparse Signal Recovery

- Optimization / ℓ_1-minimization
- Greedy algorithms
 - matching pursuit
 - orthogonal matching pursuit (OMP)
 - regularized OMP
 - CoSaMP, Subspace Pursuit, IHT, ...
Exact Recovery

If we can determine $\Lambda = \text{supp}(x)$, then the problem becomes over-determined.

In the absence of noise,

$$\Phi_{\Lambda}^\dagger y = (\Phi_{\Lambda}^T \Phi_{\Lambda})^{-1} \Phi_{\Lambda}^T y$$

$$= (\Phi_{\Lambda}^T \Phi_{\Lambda})^{-1} \Phi_{\Lambda}^T \Phi_{\Lambda} x$$

$$= x$$
Signal Recovery in Noise

Given \[y = \Phi x + e \]

find \(x \)

- Optimization-based methods
 - basis pursuit, basis pursuit de-noising, Dantzig selector

\[
\hat{x} = \arg\min_{x \in \mathbb{R}^N} \|x\|_1 \\
\text{s.t. } \|y - \Phi x\|_2 \leq \epsilon
\]

- Greedy/Iterative algorithms
 - OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT, ...
Stable Signal Recovery

Suppose that we observe \(y = \Phi x + e \) and that \(\Phi \) satisfies the RIP of order \(S \).

Typical (worst-case) guarantee

\[
\| \hat{x} - x \|_2 \leq C \| e \|_2
\]

Even if \(\Lambda = \text{supp}(x) \) is provided by an oracle, the error can still be as large as

\[
\| \hat{x} - x \|_2 = \frac{\| e \|_2}{1 - \delta}
\]
Expected Performance

- Worst-case bounds can be pessimistic

- What about the average error?
 - assume e is white noise with variance σ^2

$$\mathbb{E} \left(\|e\|_2^2 \right) = M \sigma^2$$

- for oracle-assisted estimator

$$\mathbb{E} \left(\|\hat{x} - x\|_2 \right) \leq \frac{S \sigma^2}{1 - \delta}$$

- if e is Gaussian, then for ℓ_1-minimization

$$\mathbb{E} \left(\|\hat{x} - x\|_2^2 \right) \leq CS \sigma^2 \log N$$
What if our signal x is contaminated with noise?

$$y = \Phi(x + n)$$

Suppose Φ satisfies the RIP and has orthogonal and equal-norm rows. If n is white noise with variance σ^2, then Φn is white noise with variance $\sigma^2 \frac{N}{M}$.

$$\|\hat{x} - x\|_2^2 \leq C' \frac{N}{M} S \sigma^2 \log N$$

$$\text{SNR} = 10 \log_{10} \left(\frac{\|x\|_2^2}{\|\hat{x} - x\|_2^2} \right)$$

3dB loss per octave of subsampling
Noise Folding

SNR (dB)

$\log_2 (N/M)$

[D, Laska, Treichler, and Baraniuk - 2011]
Can We Do Better?

- Better choice of Φ?
- Better recovery algorithm?

If we knew the support of x \textit{a priori}, then we could achieve

$$\|\hat{x} - x\|_2^2 \approx \frac{S}{M} S\sigma^2 \ll C' \frac{N}{M} S\sigma^2 \log N$$

Is there any way to match this performance without knowing the support of x in advance?

$$R^*_{mm}(\Phi) = \inf_{\hat{x}} \sup_{\|x\|_0 \leq S} \mathbb{E} \left[\|\hat{x}(y) - x\|_2^2 \right]$$
No!

Theorem:

If $y = \Phi x + e$ with $e \sim \mathcal{N}(0, \sigma^2 I)$, then

$$R_{mm}^*(\Phi) \geq C \frac{N}{\|\Phi\|_F^2} S\sigma^2 \log(N/S).$$

If $y = \Phi(x + n)$ with $n \sim \mathcal{N}(0, \sigma^2 I)$, then

$$R_{mm}^*(\Phi) \geq C \frac{N}{M} S\sigma^2 \log(N/S).$$

Ingredients in proof:

- Fano’s inequality
- Random construction of packing set of sparse points
- Matrix Bernstein inequality to bound empirical covariance matrix of packing set

[Candès and D - 2011]
Interference

$$y = \Phi x + e$$

- What if e represents corruption or *structured noise*, rather than Gaussian noise or arbitrary perturbations?

- Structured signal noise:
 $$y = \Phi x_S + \Phi x_I$$

- Structured measurement noise:
 $$y = \Phi x + \Omega e$$
Suppose \(x = x_S + x_I \) where \(x_S \) is sparse with unknown support and \(x_I \) is sparse with known support \(\Lambda \).

Goal: Design an \(M \times M \) matrix \(P \) such that

\[
\| P(\Phi x_I) \|_2 \approx 0
\]

\[
\| P(\Phi x_S) \|_2 \approx \| \Phi x_S \|_2
\]

\[
P = I - \Phi_\Lambda \Phi_\Lambda^\dagger
\]

Projection onto \(\mathcal{R}(\Phi_\Lambda) \)

\[
P \Phi_\Lambda = 0
\]
Lemma:
If Φ satisfies the RIP of order S, then

$$\left(1 - \frac{\delta}{1 - \delta}\right) \|x\|_2^2 \leq \|P\Phi x\|_2^2 \leq (1 + \delta) \|x\|_2^2$$

provided that $\|x\|_0 \leq S - |\Lambda|$ and $\text{supp}(x) \cap \Lambda = \emptyset$.

[D, Boufounos, Wakin, and Baraniuk - 2010]
Interference Cancellation in Action

[Graph showing the effect of K_1/K_S on Recovered SNR for different methods: Oracle, Cancel-then-recover, Recover-then-cancel.]

[D, Boufounos, Wakin, and Baraniuk - 2010]
Lemma:
If Φ satisfies the RIP of order S, then
\[
\left(1 - \frac{\delta}{1 - \delta}\right) \|x\|_2^2 \leq \|P\Phi x\|_2^2 \leq (1 + \delta) \|x\|_2^2
\]
provided that $\|x\|_0 \leq S - |\Lambda|$ and $\text{supp}(x) \cap \Lambda = \emptyset$.

\[
|\langle Py, P\Phi_j \rangle - x_j| \leq \frac{\delta}{1 - \delta} \|x_{\Lambda^c}\|_2
\]

[D, Boufounos, Wakin, and Baraniuk - 2010]
Aside: Orthogonal Matching Pursuit

OMP selects one index at a time

Iteration 1:

\[j^* = \arg \max_j |\langle y, \Phi_j \rangle| \]

If \(\Phi \) satisfies the RIP of order \(\|u \pm v\|_0 \), then

\[|\langle \Phi u, \Phi v \rangle - \langle u, v \rangle| \leq \delta \|u\|_2 \|v\|_2 \]

Set \(u = x \) and \(v = e_j \)

\[|\langle y, \Phi_j \rangle - x_j| \leq \delta \|x\|_2 \]
Aside: Orthogonal Matching Pursuit

Subsequent Iterations:

\[j^* = \arg \max_j |\langle Py, P\Phi_j \rangle| \]

\[P = I - \Phi_\Lambda \Phi_\Lambda^\dagger \]

\[P\Phi_\Lambda = 0 \quad \rightarrow \quad P\Phi x = P\Phi x^c_\Lambda \]

\[|\langle Py, P\Phi_j \rangle - x_j| \leq \frac{\delta}{1-\delta} \| x^c_\Lambda \|_2 \]
Aside: Orthogonal Matching Pursuit

Theorem:
Suppose x is S-sparse and $y = \Phi x$.
If Φ satisfies the RIP of order $S + 1$ with constant $\delta < \frac{1}{3\sqrt{S}}$, then the j^* identified at each iteration will be a nonzero entry of x.

Exact recovery after S iterations.

Argument provides simplified proofs for other orthogonal greedy algorithms (e.g. ROMP) that are robust to noise.

[D and Wakin - 2010]
What about structured measurement noise?
What about structured measurement noise?
Theorem:
If Φ is a sub-Gaussian matrix with
$$M = O \left((S + \kappa) \log \left(\frac{N + M}{S + \kappa} \right) \right)$$
then $[\Phi \ I]$ satisfies the RIP of order $(S + \kappa)$ with probability at least $1 - 3e^{-CM}$.
We can recover sparse signals *exactly* in the presence of *unbounded* sparse noise

$$\text{Fixed } \|e\|_2 = 0.1$$

[Justice Pursuit](#)

[Laska, D, and Baraniuk - 2009](#)
Conclusions

• CS systems are sensitive to noisy signals
 - if our input signal is very noisy, it isn’t really very sparse
 - when noise is large, *measurements matter*
 - exploit sparsity in a different manner - e.g., adaptivity

• CS can be highly robust to *interference*
 - structured signal noise
 - structured measurement noise

• What about quantization noise?
Quantization Noise
Signal Recovery with Quantization

- Finite-range quantization leads to *saturation* and *unbounded errors*

- Quantization noise noise changes as we change the sampling rate
Saturation Strategies

- **Rejection:** Ignore saturated measurements

- **Consistency:** Retain saturated measurements. Use them only as inequality constraints on the recovered signal

- If the rejection approach works, the consistency approach should automatically do better
Rejection and Democracy

- The RIP is *not sufficient* for the rejection approach

- Example: $\Phi = I$
 - perfect isometry
 - *every* measurement must be kept

- We would like to be able to say that *any* submatrix of Φ with sufficiently many rows will still satisfy the RIP

- Strong, *adversarial* form of “democracy”
Sketch of Proof

- Step 1: Concatenate the identity to Φ

Theorem:
If Φ is a sub-Gaussian matrix with

$$M = O \left(S \log \left(\frac{N + M}{S} \right) \right)$$

then $[\Phi \; I]$ satisfies the RIP of order S with probability at least $1 - 3e^{-CM}$.

[D, Laska, Boufounos, and Baraniuk - 2009]
Sketch of Proof

• Step 2: Combine with the “interference cancellation” lemma

\[\Lambda \]

\[P\Phi = \tilde{\Phi} \]

• The fact that \([\Phi \ I]\) satisfies the RIP implies that if we take \(D\) extra measurements, then we can delete \(O(D)\) arbitrary rows of \(\Phi\) and retain the RIP.

• This is a strong adversarial notion of democracy

[D, Laska, Boufounos, and Baraniuk - 2009]
Rejection In Practice

$$\text{SNR} = 10 \log_{10} \left(\frac{\|x\|^2}{\|\hat{x} - x\|^2} \right)$$
Rejection In Practice

\[\text{SNR} = 10 \log_{10} \left(\frac{\|x\|_2^2}{\|\hat{x} - x\|_2^2} \right) \]
Rejection In Practice

\[\text{SNR} = 10 \log_{10} \left(\frac{\|x\|_2^2}{\|\hat{x} - x\|_2^2} \right) \]
Benefits of Saturation

\[\text{saturation rate} \approx 0 \]

SNR (dB)

Saturation Rate

\[T \]

[Laska, Boufounos, D, and Baraniuk - 2011]
Benefits of Saturation

\[\approx 5 \text{ dB gain} \]

SNR (dB) vs. Saturation Rate

[Laska, Boufounos, D, and Baraniuk - 2011]
Potential for SNR Improvement?

By sampling at a lower rate, we can quantize to a higher bit-depth, allowing for potential gains.

[Le et al. - 2005]
Empirical SNR Improvement

SNR (dB)

log₂(N/M)

8 bits

4 bits

Oracle CS

CoSaMP CS

[D, Laska, Treichler, and Baraniuk - 2011]
Conclusions

• CS is robust to quantization noise in a non-traditional sense

• Democracy is a major advantage of CS measurements

• CS offers the potential to significantly boost dynamic range
 - can offset drawbacks associated with noise

• When is CS most useful?
 - performance is limited by quantization (high bandwidth apps)
 - when your signal is sparse (not too noisy)
Real-World Signal Models
Candidate Analog Signal Models

<table>
<thead>
<tr>
<th></th>
<th>Model for $x(t)$</th>
<th>Basis for x</th>
<th>Sparsity level for x</th>
</tr>
</thead>
<tbody>
<tr>
<td>multitone</td>
<td>sum of S “on-grid” tones</td>
<td>$\Psi = \text{DFT}$</td>
<td>S-sparse</td>
</tr>
</tbody>
</table>

Mathematical Expression

$$X(F) = \sum_{n=-\frac{B_{\text{nyq}}}{2}}^{\frac{B_{\text{nyq}}}{2}} X(n) e^{-j2\pi fn T}$$
Candidate Analog Signal Models

<table>
<thead>
<tr>
<th>Model for $x(t)$</th>
<th>Basis for x</th>
<th>Sparsity level for x</th>
</tr>
</thead>
<tbody>
<tr>
<td>multitone sum of S “on-grid” tones</td>
<td>$\Psi = \text{DFT}$</td>
<td>S-sparse</td>
</tr>
<tr>
<td>multiband K occupied bands of bandwidth B</td>
<td>$\Psi = ?$</td>
<td>?</td>
</tr>
</tbody>
</table>

![Diagram](chart.png)

- Landau
- Bresler, Feng, Venkataramani
- Eldar, Mishali

\[X(F) = \frac{B_{\text{nyq}}}{2} \quad 0 \quad \frac{B_{\text{nyq}}}{2} \]
The Problem with the DFT

\[x(t) = \int_{-\frac{B}{2}}^{\frac{B}{2}} X(F) e^{j2\pi Ft} \, dF \]

sampling

\[x[n] = \int_{-W}^{W} X(f) e^{j2\pi fn} \, df, \quad \forall n \]

\[W = \frac{B}{2B_{nyq}} \]
The Problem with the DFT

\[x[n] = \int_{-\frac{1}{2}}^{\frac{1}{2}} X(f) e^{j2\pi f n} \, df, \quad \forall n \]

\[x = \sum_{k=0}^{N-1} X_k e^{j \frac{2\pi k}{N}}, \quad e_f := \begin{bmatrix} e^{j2\pi f_0} \\ e^{j2\pi f} \\ \vdots \\ e^{j2\pi f(N-1)} \end{bmatrix} \]

time-limiting

NOT SPARSE
\[x[n] = \int_{-W}^{W} X(f) e^{j2\pi fn} \, df, \quad \forall n \]

Diagram:

\[\mathcal{T}_N(x[n]) = \int_{-W}^{W} X(f) \mathcal{T}_N(e^{j2\pi fn}) \, df, \quad \forall n \]
Time-limited complex exponentials form a “basis” for bandlimited signals

\[x = \int_{-W}^{W} X(f) e_f \, df \]

\[e_f := \begin{bmatrix} e^{j2\pi f_0} \\ e^{j2\pi f} \\ \vdots \\ e^{j2\pi f(N-1)} \end{bmatrix} \]

The problem: we need infinitely many of them.
Suppose that we wish to minimize
\[
\int_{-W}^{W} \| e_f - P_Q e_f \|_2^2 \, df
\]
over all subspaces Q of dimension k.

Optimal subspace is spanned by the first k “DPSS vectors”.
Discrete Prolate Spheroidal Sequences (DPSS’s)

Slepian [1978]: Given an integer N and $\frac{W}{N} \leq \frac{1}{2}$, the DPSS’s are a collection of N vectors

$$s_0, s_1, \ldots, s_{N-1} \in \mathbb{R}^N$$

that satisfy

$$\mathcal{T}_N(\mathcal{B}_W(s_\ell))) = \lambda_\ell s_\ell.$$

The DPSS’s are perfectly time-limited, but when $\lambda_\ell \approx 1$ they are highly concentrated in frequency.
The first $\approx 2NW$ eigenvalues ≈ 1.
The remaining eigenvalues ≈ 0.

$N = 1024$
$W = \frac{1}{4}$
$2NW = 512$
DPSS Examples

\[N = 1024 \quad W = \frac{1}{4} \]

\[\ell = 0 \quad \ell = 127 \quad \ell = 511 \]
Recall: Best Subspace Fit

Suppose that we wish to minimize

$$\int_{-W}^{W} \| e_f - P_Q e_f \|_2^2 \, df$$

over all subspaces Q of dimension k.

Optimal subspace is spanned by the first k “DPSS vectors”.

$$\int_{-W}^{W} \| e_f - P_Q e_f \|_2^2 \, df = \sum_{\ell=k}^{N-1} \lambda_\ell$$
Approximation of Bandlimited Signals

\[\text{SNR} = 20 \log_{10} \left(\frac{\|e_f\|}{\|e_f - P_Q e_f\|} \right) \text{ dB} \]
Approximation of Bandlimited Signals

$$\text{SNR} = 20 \log_{10} \left(\frac{\|e_f\|}{\|e_f - P_Q e_f\|} \right) \text{ dB}$$
DPSS’s for Bandpass Signals
Modulate k DPSS vectors to center of each band:

$$\Psi = [\Psi_1, \Psi_2, \ldots, \Psi_J]$$

approximately square if $k \approx 2NW$

Most multiband signals, when sampled and time-limited, are well-approximated by a sparse representation in Ψ.
Theorem:
Suppose that Φ is sub-Gaussian and that the Ψ_i are constructed with $k = (1 - \epsilon)2NW$. If

$$M \geq CS \log(N/S)$$

then with high probability $\Phi \Psi$ will satisfy the RIP of order S.

K occupied bands $\quad\Rightarrow\quad S \approx KNB/B_{nyq}$

$$\frac{M}{N} \geq C' \frac{KB}{B_{nyq}} \log \left(\frac{B_{nyq}}{KB} \right)$$

[D and Wakin - 2011]
Block-Sparse Recovery

Nonzero coefficients of α should be clustered in blocks according to the occupied frequency bands

$$x = [\Psi_1, \Psi_2, \ldots, \Psi_J] \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_J \end{bmatrix}$$

This can be leveraged to reduce the required number of measurements and improve performance through “model-based CS”

- Baraniuk et al. [2008, 2009, 2010]
- Blumensath and Davies [2009, 2011]
Empirical Results: Noise

\[N = 4096 \]
\[M = 512 \]
\[K = 5 \]
\[\frac{B}{B_{\text{nyq}}} = \frac{1}{256} \]

[D and Wakin - 2011]
Empirical Results: Measurements

\[N = 4096 \]

\[\frac{B}{B_{\text{nyq}}} = \frac{1}{256} \]

[D and Wakin - 2011]
Empirical Results: Measurements

\[N = 4096 \]

\[\frac{B}{B_{nyq}} = \frac{1}{256} \]

Graph showing the relationship between recovery SNR (dB) and oversampling factor for different values of K. The graph includes data points and lines for $K = 5$, $K = 10$, and $K = 15$. The formula $\frac{M}{2NWK}$ is also shown in the legend box.
Empirical Results: Real-World Sensors

\[N = 4096 \]
\[\frac{B}{B_{\text{nyq}}} = \frac{1}{256} \]
\[K = 5 \]
Empirical Results: DFT Comparison

\[N = 4096 \]

\[\frac{B}{B_{\text{nyq}}} = \frac{1}{256} \]

\[K = 5 \]

[Empirical Results: DFT Comparison - D and Wakin - 2011]
Empirical Results: DFT Comparison

\[N = 4096 \]

\[\frac{B}{B_{nyq}} = \frac{1}{256} \]

\[K = 5 \]

[D and Wakin - 2011]
Interference Cancellation

DPSS’s can be used to cancel bandlimited interferers without reconstruction.

\[P = I - \Phi \Psi_i (\Phi \Psi_i)^\dagger \]

Extremely useful in compressive signal processing applications.
Conclusions

• DPSS’s can be used to efficiently represent *most* sampled multiband signals
 - far superior to DFT

• Two types of error: *approximation* + *reconstruction*
 - approximation: small for most signals
 - reconstruction: zero for DPSS-sparse vectors
 - delicate balance in practice, but there is a sweet spot

• This approach combines careful design of Ψ with more sophisticated sparse models
 - relevant in many contexts beyond ADCs