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Important Practical Challenges 

• Noise! 

– noisy measurements 

– noisy signals 

– interferene 

 

• Quantization 

– quantization error 

– saturation effects 

 

• Good signal models 

– is sparsity sometimes not enough? 

– what dictionaries should we use in practice? 



Measurement and 

Signal Noise 



Sparse Signal Recovery 

support 
values 

• Optimization /    -minimization 
 

• Greedy algorithms 

– matching pursuit 

– orthogonal matching pursuit (OMP) 

– regularized OMP 

– CoSaMP, Subspace Pursuit, IHT, … 



Exact Recovery 

If we can determine                   , then the problem becomes 

over-determined.  

 

 

 

 

 

 

In the absence of noise,   



Signal Recovery in Noise 

  Given              

find     

• Optimization-based methods 

– basis pursuit, basis pursuit de-noising, Dantzig selector 

 

 

 

 
 

• Greedy/Iterative algorithms 

– OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT, … 



Stable Signal Recovery 

Suppose that we observe                                         and that     satisfies the 

RIP of order   .  

 

Typical (worst-case) guarantee 

 

 

 

Even if                     is provided by an oracle, the error can 

still be as large as 

 



Expected Performance 

• Worst-case bounds can be pessimistic 
 

• What about the average error? 

–  assume     is white noise with variance 

 

 

– for oracle-assisted estimator     

 

 
 

– if    is Gaussian, then for    -minimization 



White Signal Noise 

Suppose     satisfies the RIP and has orthogonal and equal-

norm rows.  If    is white noise with variance     , then       is 

white noise with variance         . 

 

 

 

 

 

 

What if our signal     is contaminated with noise? 

3dB loss per octave  
of subsampling 



Noise Folding 

[D, Laska, Treichler, and Baraniuk - 2011] 



Can We Do Better? 

• Better choice of    ? 

• Better recovery algorithm? 

 

If we knew the support of    a priori, then we could achieve  

 

 

 

Is there any way to match this performance without knowing 

the support of    in advance? 



No! 

Ingredients in proof: 

• Fano’s inequality 

• Random construction of packing set of sparse points 

• Matrix Bernstein inequality to bound empirical covariance matrix 

of packing set 
[Candès and D - 2011] 

Theorem:   

If                   with                      , then 

 

 
 

If                      with                       , then 



Interference 

 

 

 

• What if    represents corruption or structured noise, rather 

than Gaussian noise or arbitrary perturbations? 

 

• Structured signal noise:  

 

 

• Structured measurement noise: 



Interference Cancellation 

Suppose                     where      is sparse with unknown  

support and      is sparse with known support 

 

Goal:  Design an             matrix     such that 

 

Projection onto 



Interference Cancellation 

Lemma: 

If    satisfies the RIP of order    , then         

 

 

provided that                           and  

 [D, Boufounos, Wakin, and Baraniuk – 2010] 



Interference Cancellation in Action 

 [D, Boufounos, Wakin, and Baraniuk – 2010] 



Interference Cancellation 

Lemma: 

If    satisfies the RIP of order    , then         

 

 

provided that                           and  

 [D, Boufounos, Wakin, and Baraniuk – 2010] 



Aside: Orthogonal Matching Pursuit 

OMP selects one index at a time 
 

Iteration 1: 

If     satisfies the RIP of order               , then 

 

 

Set            and  



Aside: Orthogonal Matching Pursuit 

Subsequent Iterations: 



Aside: Orthogonal Matching Pursuit 

Theorem: 

Suppose    is    -sparse and 

If    satisfies the RIP of order           with constant 

              , then the      identified at each iteration 

will be a nonzero entry of    .   

                Exact recovery after    iterations. 
 

 

Argument provides simplified proofs for other orthogonal 

greedy algorithms (e.g. ROMP) that are robust to noise 

 [D and Wakin – 2010] 



Measurement Interference Cancellation 

What about structured measurement noise? 

corrupted 

measurements 



Measurement Interference Cancellation 

What about structured measurement noise? 

corrupted 

measurements 



Justice Pursuit 

Theorem:   

If    is a sub-Gaussian matrix with 

 

 

then         satisfies the RIP of order             with 

probability at least                 .  

Does this matrix 

satisfy the RIP? 

[Laska, D, and Baraniuk - 2009] 



Justice Pursuit 

Fixed 

We can recover sparse signals exactly in the presence  

of unbounded sparse noise 

 

 

 

 

 

 

 

 

 

[Laska, D, and Baraniuk - 2009] 



Conclusions 

• CS systems are sensitive to noisy signals 

– if our input signal is very noisy, it isn’t really very sparse 

– when noise is large, measurements matter 

– exploit sparsity in a different manner - e.g., adaptivity 

 

• CS can be highly robust to interference 

– structured signal noise 

– structured measurement noise 

 

• What about quantization noise? 



Quantization Noise 



Signal Recovery with Quantization 

• Finite-range quantization leads to saturation and 

unbounded errors 
 

• Quantization noise changes as we change the sampling rate 



Saturation Strategies 

• Rejection: Ignore saturated measurements 

 

 

 

 

 
 

• Consistency: Retain saturated measurements. 

Use them only as inequality constraints on the recovered 

signal 

 

• If the rejection approach works, the consistency approach 

should automatically do better 



• The RIP is not sufficient for the rejection approach 
 

• Example:           

– perfect isometry 

– every measurement must be kept 
 

• We would like to be able to say that any submatrix of     

with sufficiently many rows will still satisfy the RIP    

 

 

 

 

• Strong, adversarial form of “democracy” 

Rejection and Democracy 



• Step 1: Concatenate the identity to 

 

 

 

 

 

 

 

 

Sketch of Proof 

Theorem:   

If    is a sub-Gaussian matrix with 

 

 

then         satisfies the RIP of order     with 

probability at least                 .  

[D, Laska, Boufounos, and Baraniuk - 2009] 



• Step 2: Combine with the “interference cancellation” 
lemma 

Sketch of Proof 

• The fact that          satisfies the RIP implies that if we take       

    extra measurements,  then we can delete  

arbitrary rows of     and retain the RIP 
 

• This is a strong adversarial notion of democracy 

 
[D, Laska, Boufounos, and Baraniuk - 2009] 



Rejection In Practice 

T 

-T 



Rejection In Practice 

T 
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Rejection In Practice 

T 

-T 



Benefits of Saturation 

Saturation 

Rate 

saturation 

rate 

[Laska, Boufounos, D, and Baraniuk - 2011] 



Benefits of Saturation 

Saturation 

Rate 

saturation 
rate dB 

gain 

[Laska, Boufounos, D, and Baraniuk - 2011] 



Potential for SNR Improvement? 

By sampling at a lower rate, we can quantize to a higher bit-

depth, allowing for potential gains 

[Le et al. - 2005] 



Empirical SNR Improvement 

[D, Laska, Treichler, and Baraniuk - 2011] 



Conclusions 

• CS is robust to quantization noise in a non-traditional sense 

 

• Democracy is a major advantage of CS measurements 

 

• CS offers the potential to significantly boost dynamic range 

– can offset drawbacks associated with noise 

 

• When is CS most useful?  

– performance is limited by quantization (high bandwidth apps) 

– when your signal is sparse (not too noisy) 



Real-World 

Signal Models 



Candidate Analog Signal Models 

Model for   1 
Basis 
for  a 

Sparsity level 
for  x 

multitone 
sum of    

“on-grid” tones 
    = DFT    -sparse 
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Candidate Analog Signal Models 
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The Problem with the DFT 

x(t) =

Z B
2

¡B
2

X(F )ej2¼Ft dF

Bnyq

2
¡Bnyq

2
0

X(F)

B

CTFT 

sampling 

x[n] =

Z W

¡W
X(f)ej2¼fn df; 8n

W = B
2Bnyq 1

2
¡ 1

2 0

X(f)

2W

DTFT 



1
2

¡ 1
2 0

The Problem with the DFT 

x =

N¡1X

k=0

Xke k
N

; ef :=

2
6664

ej2¼f0

ej2¼f

...

ej2¼f(N¡1)

3
7775

x[n] =

Z W

¡W
X(f)ej2¼fn df; 8n

1
2

¡ 1
2 0

X(f)

2W

NOT SPARSE 

DTFT 

DFT 

time-limiting 



Alternative Perspective 

x[n] =

Z W

¡W
X(f)ej2¼fn df; 8n

1
2

¡ 1
2 0

X(f)

2W

DTFT 

time-limiting 

TN(x[n]) =

Z W

¡W
X(f)TN(ej2¼fn) df; 8n



Time-limited complex exponentials form a “basis” for 

bandlimited signals 

 

 

 

 

 

 

 

 

 
The problem: we need infinitely many of them. 

 

x =

Z W

¡W
X(f)ef df

Building Blocks for Lowpass Signals 

e0

e¡W
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Suppose that we wish to minimize 

 

 

 

over all subspaces      of dimension    .  

Best Subspace Fit 

Optimal subspace is spanned  

by the first    “DPSS vectors”. 



Discrete Prolate Spheroidal Sequences 

(DPSS’s) 

Slepian [1978]: Given an integer     and             , 

the DPSS’s are a collection of     vectors 

 
 

that satisfy 

   

The DPSS’s are perfectly time-limited, but when  

            they are highly concentrated in frequency. 



DPSS Eigenvalue Concentration 

¸`

`

The first               eigenvalues      . 

The remaining eigenvalues      . 



DPSS Examples 



Suppose that we wish to minimize 

 

 

 

over all subspaces      of dimension    .  

Recall: Best Subspace Fit 

Optimal subspace is spanned  

by the first    “DPSS vectors”. 



Approximation of Bandlimited Signals 



Approximation of Bandlimited Signals 



DPSS’s for Bandpass Signals 
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DPSS Dictionaries for CS 

Modulate    DPSS vectors 

to center of each band: 

 

 

 

 

 

 

       

Most multiband signals, when sampled and time-limited,  

are well-approximated by a sparse representation in    . 

   possible bands 

approximately square 

if            a 



occupied bands 

DPSS Dictionaries and the RIP 

Theorem:   

Suppose that     is sub-Gaussian and that the      

are constructed with                          .  If  

 

 

then with high probability       will satisfy the RIP 

of order   . 

[D and Wakin - 2011] 



Block-Sparse Recovery 

Nonzero coefficients of     should be clustered in blocks 

according to the occupied frequency bands 

 

 

 

 

 

 

This can be leveraged to reduce the required number of 

measurements and improve performance through “model-

based CS” 

–Baraniuk et al. [2008, 2009, 2010] 

–Blumensath and Davies [2009, 2011] 

 



Empirical Results: Noise 

[D and Wakin - 2011] 



Empirical Results: Measurements 

[D and Wakin - 2011] 



Empirical Results: Measurements 

[D and Wakin - 2011] 



Empirical Results: Real-World Sensors 

[D and Wakin - 2011] 



Empirical Results: DFT Comparison 

[D and Wakin - 2011] 



Empirical Results: DFT Comparison 

[D and Wakin - 2011] 



Interference Cancellation 

DPSS’s can be used to cancel bandlimited interferers without 

reconstruction. 

 

 

 

 

 

 

 

 

Extremely useful in compressive signal processing 

applications. 



Conclusions 

• DPSS’s can be used to efficiently represent most sampled 

multiband signals 

– far superior to DFT 

 

• Two types of error: approximation + reconstruction 

– approximation: small for most signals 

– reconstruction: zero for DPSS-sparse vectors 

– delicate balance in practice, but there is a sweet spot 

 

• This approach combines careful design of      with more 

sophisticated sparse models 

– relevant in many contexts beyond ADCs 


