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Important Practical Challenges

e Noise!
- noisy measurements
- noisy signals
- interferene

e Quantization
- quantization error
- saturation effects

e Good signal models
- is sparsity sometimes not enough?
- what dictionaries should we use in practice?
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Sparse Signal Recovery
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e Optimization / /1 -minimization

e Greedy algorithms
- matching pursuit
- orthogonal matching pursuit (OMP)
- regularized OMP
- CoSaMP, Subspace Pursuit, IHT, ...



Exact Recovery

If we can determine A = supp(x), then the problem becomes
over-determined.
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Sighal Recovery in Noise

Given y=®x + ¢
find «

e Optimization-based methods
- basis pursuit, basis pursuit de-noising, Dantzig selector

Tr = argmin ||z||;
rERN

s.t. |y — Pxll2 < e

o Greedy/lterative algorithms
- OMP, StOMP, ROMP, CoSaMP, Thresh, SP, IHT, ...



Stable Sighal Recovery

Suppose that we observe y = ®x + e and that ® satisfies the
RIP of order S.

Typical (worst-case) guarantee

[ 17 — 2]l < Clle]l» ]

Even if A = supp(x) is provided by an oracle, the error can
still be as large as

- _ lell2




Expected Performance

o Worst-case bounds can be pessimistic

 What about the average error?
- assume e is white noise with variance o2

E (Jlellz) = Mo~

- for oracle-assisted estimator

R So?
E (| - o) < 0

- if e is Gaussian, then for ¢, -minimization

E (|z —z|5) < CSo’log N



White Signal Noise

What if our signal = is contaminated with noise?

y = ®(z +n)

Suppose @ satisfies the RIP and has orthogonal and equal-

norm rows. If n is white noise with variance 02, then ®n is

white noise with variance o2 7 .

N
[|fﬁ zl|5 < C"MSJQ log N ]

_ 3dB loss per octave
SNR = 101log, ( ) ‘ of subsampling



Noise Folding

— 3dB per octave
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[D, Laska, Treichler, and Baraniuk - 2011]



Can We Do Better?

o Better choice of ¢ ?
e Better recovery algorithm?

If we knew the support of x a priori, then we could achieve

~ S N
1z — z||3 ~ MSJQ < C’MSUQ log N

Is there any way to match this performance without knowing
the support of = in advance?

Ry (®) =inf sup E[[|Z(y) — 23]
® Jleflo<s



No!

ﬁeorem: \

If y=®z+ ewithe ~ N(0,0°1), then
N
[kl
If y = ®(x + n) with n ~ N(0,0%I), then

R* _(®) > C——So?log(N/S).

x N o 9
\ R (®) > OMSO' log(N/S). /

Ingredients in proof:
e Fano’s inequality
 Random construction of packing set of sparse points

e Matrix Bernstein inequality to bound empirical covariance matrix

of packing set
[Candes and D - 2011]



Interference

y=>oxr+e

« What if e represents corruption or structured noise, rather
than Gaussian noise or arbitrary perturbations?

e Structured signal noise:
y=drg + Py

e Structured measurement noise:

y = &x + (e



Interference Cancellation

Suppose * = x5 + x5 where xg is sparse with unknown
support and x; is sparse with known support A

Goal: Design an M x M matrix P such that
|P(®xr)f2 ~ 0

|P(®zs)l2 ~ [[Pzs]2

P=1—3,d}
\_'_’
Projection onto R(®a)

Pdy =0



Interference Cancellation

/Lemma: \

If ® satisfies the RIP of order S, then

0
(1= 125 ) Il < P2l < (1-+ 6) ol

provided that ||z]o < S —|A| and supp(z) N A = 0.
\_ _/

[D, Boufounos, Wakin, and Baraniuk - 2010]



Interference Cancellation in Action
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[D, Boufounos, Wakin, and Baraniuk - 2010]



Interference Cancellation

/Lemma: \

If ® satisfies the RIP of order S, then

0
(1= 125 ) Il < P2l < (1-+ 6) ol

provided that ||z]o < S —|A| and supp(z) N A = 0.
\_ _/

0
) [(Py, PP;) —aj] < —

sllwacl2

[D, Boufounos, Wakin, and Baraniuk - 2010]



Aside: Orthogonal Matching Pursuit

OMP selects one index at a time

[teration 1:

J

[ j* = argmax|{y, ;) ]

If ® satisfies the RIP of order ||u £ v

[(Du, Pv) — (u,v)| <6

Set u=x and v = ¢;

(Y, ®5) — 23] < d|z|2

.

*



Aside: Orthogonal Matching Pursuit

Subsequent Iterations:

[ j* = argmax |(Py, P®;) ]

J

P=1-3,0]

PPy =0 wmp Pdr— Pz,

%)
) |[(Py, PO;) — ;| < —=|lzacl2




Aside: Orthogonal Matching Pursuit

ﬂl’heorem: )

Suppose x is S-sparse and y = Px.

If ® satisfies the RIP of order S + 1 with constant

§ < —= , then the j* identified at each iteration
3V

\wﬂl be a nonzero entry of x. y

mm) Exact recovery after S iterations.

Argument provides simplified proofs for other orthogonal
greedy algorithms (e.g. ROMP) that are robust to noise

[D and Wakin - 2010]



Measurement Interference Cancellation

What about structured measurement noise?

measurements
—
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Measurement Interference Cancellation

What about structured measurement noise?
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Justice Pursuit

i = arg min |[ul Does this matrix
— a6 ol satisfy the RIP?

u

st. y=|[® I|u

l[@ ullz = |23 + 2¢" Pz + [lel3 = [|=]|7 + |le]l2

/T heorem: \

If ®is a sub-Gaussian matrix with

M=0((s+nlog (T )

S+ kK
then [® [] satisfies the RIP of order (S + k) with
\ probability at least 1 - 3e~ M, )

[Laska, D, and Baraniuk - 2009]



Justice Pursuit

We can recover sparse signals exactly in the presence
of unbounded sparse noise

Fixed |le||2 = 0.1

A =10

o =40
0.25} B k=70 ||
—JP
0.2}

Average Error
o
o

o
—

0.15 0.2 0.25 0.3 0.35

[Laska, D, and Baraniuk - 2009]



Conclusions

e CS systems are sensitive to noisy signals
- if our input signal is very noisy, it isn’t really very sparse
- when noise is large, measurements matter
- exploit sparsity in a different manner - e.g., adaptivity

e CS can be highly robust to interference
- structured signhal noise

- structured measurement noise

« What about quantization noise?



Quantization Noise




Sighal Recovery with Quantization

/ Integrator Sample-and-Hol Quantizer

Pseudorandom
Number [«Seed

\ Generator /

e Finite-range quantization leads to saturation and
unbounded errors

e Quantization noise changes as we change the sampling rate



Saturation Strategies

e Rejection: Ignore saturated measurements

E

o

o Consistency: Retain saturated measurements.

Use them only as inequality constraints on the recovered
signal

e If the rejection approach works, the consistency approach
should automatically do better



Rejection and Democracy

The RIP is not sufficient for the rejection approach

Example: & =1
- perfect isometry
- every measurement must be kept

We would like to be able to say that any submatrix of ®
with sufficiently many rows will still satisfy the RIP

H:H

Strong, adversarial form of “democracy”



Sketch of Proof

e Step 1: Concatenate the identity to ®

/T heorem: \

If ®is a sub-Gaussian matrix with

)

then [® ]| satisfies the RIP of order S with
Qrobability at least 1 — 3¢~ “M, /

[D, Laska, Boufounos, and Baraniuk - 2009]



Sketch of Proof

e Step 2: Combine with the “interference cancellation”
lemma

~

| A 1 P(b:q)

B i ::'H' ‘ 5.:.] N ..F

« The fact that [® I] satisfies the RIP implies that if we take
D extra measurements, then we can delete O(D)
arbitrary rows of ® and retain the RIP

e This is a strong adversarial notion of democracy

[D, Laska, Boufounos, and Baraniuk - 2009]



Rejection In Practice

1Z—23



Rejection In Practice

EE Y T
SNR = 10log, ( L2l )




Rejection In Practice
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SNR (dB)
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[Laska, Boufounos, D, and Baraniuk - 2011]



Benefits of Saturation
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[Laska, Boufounos, D, and Baraniuk - 2011]



Potential for SNR Improvement?

By sampling at a lower rate, we can quantize to a higher bit-
depth, allowing for potential gains
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SNR (dB)

Empirical SNR Improvement
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Conclusions

CS is robust to quantization noise in a non-traditional sense
Democracy is a major advantage of CS measurements

CS offers the potential to significantly boost dynamic range
- can offset drawbacks associated with noise

When is CS most useful?
- performance is limited by quantization (high bandwidth apps)
- when your signal is sparse (not too noisy)



Real-World
Signal Models




Candidate Analog Sighal Models

- Model for x(t) Sparsity level

multitone U @ & W = DFT S -sparse

“on-grid” tones

il
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Candidate Analog Sighal Models

- Model for z(t) Sparsity level

multitone 9 >uim ,,O f.o U = DFT S -sparse
on-grid” tones

: K occupied bands _
multiband of bandwidth B b= :

|||||||||||
: H : H H t H H H H H
..........

é ég éé - Landau
X(F) - Bresler, Feng, Venkataramani
- Eldar, Mishali




The Problem with the DFT

lsampling

W
ofn] = / X g,

W=

2Bnyq

CTFT

IDTFT ———




The Problem with th

W
z[n) :/_WX(f)6j2”f” daf, Yn x(p

l time-limiting —

B 6j27TfO 7
N-—1 6j27rf
T = E Xkejz%, ef 1=
k=0 . .

NOT SPARSE

e DFT
DTFT




Alternative Perspective

DTFT

%4
:/ X(f)€j27rfn df, \VITL X(f)
—W

l time-limiting —

/ X(f)Tw (2™ df, Vn



Building Blocks for Lowpass Signals

Time-limited complex exponentials form a “basis” for
bandlimited sighals

€ cN
W ®

1%

T = X(f)ey df o
/—W C—w
B ej27rf0 7
pJ27 f
Ef =
pd2m f(N—1)
o
€0

The problem: we need infinitely many of them.



Best Subspace Fit

Suppose that we wish to minimize

W
2
f ley — Pgeyl|s df
—W

over all subspaces () of dimension & .

(

\_

Optimal subspace is spanned
by the first £ “DPSS vectors”.

\

J




Discrete Prolate Spheroidal Sequences
(DPSS’s)

Slepian [1978]: Given an integer N and W <
the DPSS’s are a collection of N vectors

)

DO

N
$0y51y+--3SN—-1 c R

that satisfy
Ta(Bw(se))) = Aese.

N
The DPSS’s are perfectly time-limited, but when
A¢ = 1 they are highly concentrated in frequency.

J




DPSS Eigenvalue Concentration
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DPSS Examples

N = 1024 W =

N
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Recall: Best Subspace Fit

Suppose that we wish to minimize

W
2
f ley — Pgeyl|s df
—W

over all subspaces () of dimension & .

(

\_

Optimal subspace is spanned
by the first £ “DPSS vectors”.

\

J

W N—1

| lles = Pacsli3dr = Y- o
-W 1=k



Approximation of Bandlimited Signals
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Approximation of Bandlimited Signals

SNR = 20log,, ( e/ ) dB
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DPSS’s for Bandpass Signals
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DPSS Dictionaries for CS

Modulate k£ DPSS vectors
to center of each band:

U = [0, U,,..., 0]

\

|

approximately square

ifk~2NW

X(f) |

lllllllll

J possible bands

-

\_

Most multiband signals, when sampled and time-limited,
are well-approximated by a sparse representation in W .

\

J




DPSS Dictionaries and the

RIP

ﬁ heorem:

are constructed with k£ = (1 — €¢)2NW. |If
M > CSlog(N/S)

then with high probability ®W¥ will satisfy
\of orderS.

Suppose that ® is sub-Gaussian and that the ¥,

~

the RIP

/

K occupied bands ®= S~ KNB/

N
M > ' hb log Buyq
N Biryq KB
- y

-

B nyq

[D and Wakin - 2011]



Block-Sparse Recovery

Nonzero coefficients of o should be clustered in blocks
according to the occupied frequency bands

aj:[\IJIJ\IJQV"J\IJJ] 031

This can be leveraged to reduce the required number of
measurements and improve performance through “model-
based CS”

-Baraniuk et al. [2008, 2009, 2010]
-Blumensath and Davies [2009, 2011]



Recovery SNR (dB)

Empirical Results: Noise
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Empirical Results: Measurements

Measurements (M)
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Empirical Results: Measurements
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Empirical Results: Real-World Sensors
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Empirical Results: DFT Comparison
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Empirical Results: DFT Comparison
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Interference Cancellation

DPSS’s can be used to cancel bandlimited interferers without
reconstruction.

0

50+

100} - P=1—®¥,(d¥,)
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Extremely useful in compressive signal processing
applications.



Conclusions

DPSS’s can be used to efficiently represent most sampled
multiband signals

- far superior to DFT

Two types of error: approximation + reconstruction
- approximation: small for most signals
- reconstruction: zero for DPSS-sparse vectors
- delicate balance in practice, but there is a sweet spot

This approach combines careful design of ¥ with more
sophisticated sparse models

- relevant in many contexts beyond ADCs



