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Compressive Sensing

Replace samples with general linear measurements

y=>x

N x 1
sampled

signal

M x 1
measurements

M x N

S-sparse

[Donoho; Candes, Romberg, and Tao - 2004]



Analog Sensing is Matrix Multiplication

If x(t) is bandlimited,
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Restricted Isometry Property (RIP)
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RIP and Stability
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How Many Measurements?

If & satisfies the RIP with constant ¢, then

M > CsjcSSIOg (N/S)

Sketch of proof: Construct a set X" such that
- forany z € X, ||z|lo =S
- X & (N/S)S
- for any pair =,y € X,1 < ||z —yll2 <2
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Sub-Gaussian Distributions

o Sub-Gaussian: E (e*?) < ec /2
- Gaussian
- Bernoulli/Rademacher (+1)
- any bounded distribution

« Strictly sub-Gaussian: E (e*") < et /2

e For any z, if the entries of ® are sub-Gaussian, then there
exist o and 5 such that w.h.p.

afz)z < [Pz]z < Bllz3

Strictly sub-Gaussian m) o=1—-90, B=1+6



Johnson-Lindenstrauss Lemma

« Stable projection of a discrete set of P points
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e Pick ® at random using a sub-Gaussian distribution

o For any fixed z, ||®z|/2 concentrates around ||=|2
with (exponentially) high probability

 We preserve the length of all O(PQ) difference vectors
simultaneously if M = O(log P?) = O(log P).



JL Lemma Meets RIP
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O ((N/S)”) wmp M =O(Slog(N/S))

[Baraniuk, D, DeVore, and Wakin -2008]



RIP Matrix: Option 1

e Choose a random matrix

- fill out the entries of ® with i.i.d. samples from a sub-
Gaussian distribution

- project onto a “random subspace”

M = 0O(Slog(N/S)) < N

[Baraniuk, D, DeVore, and Wakin -2008]



RIP Matrix: Option 2

e Random Fourier submatrix

M = O(Slog?(N/S)) < N

[Candes and Tao - 2006]



“Fast JL Transform”

e By first multiplying by random signs, a random Fourier
submatrix can be used for efficient JL embeddings

e If you multiply the columns of any RIP matrix by random
signs, you get a JL embedding!

[Ailon and Chazelle - 2007; Krahmer and Ward - 2010 ]



Hallmarks of Random Measurements

Stable

With high probability, ® will preserve information, be robust to
noise

Universal

® will work with any fixed orthonormal basis (w.
Y

Democratic
Each measurement has “equal weight”
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Tomography in the Abstract

Y r=xcosf+ ysinb
po(T1)

pg('r)=//f(m,y)é(:ccose—l—ysiné?—'r)dmdy



Fourier-Domain Interpretation

e Each projection gives us a “slice” of the 2D Fourier
transform of the original image

e Similar ideas in MRI

o Traditional solution: Collect lots (and lots) of slices



Why CS?
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, Mrs. Dunn. We'll slide you in there, scan your
brain, and see if we can find out why you've
been having these spells of claustrophobia.”




CS for MRI Reconstruction

256x256 MRA

¥ Fourier sampling i

J 80 lines (M-0.28N Min TV, 34.23dB [CR]




Multi-Slice Brain Imaging

Full data

» Scan reduction: x2.4
* Transform: wavelet




Pediatric MRI

CS MRI

ional MRI

i

Trad

4-8 x faster!

[Vasanawala, Alley, Hargreaves, Barth, Pauly, and Lustig - 2010]



“Single-Pixel Camera”

x|n| = //x(t:tg)dtl dto

pixel n

[Duarte, D, Takhar, Laska, Sun, Kelly, and Baraniuk - 2008]



1 Chip DLP™ Projection
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icromirror Device
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“Single-Pixel” Camera

LED (light source)

Photodiode | DMD-+ALP
circuit B Yo - : Board




“Single-Pixel” Camera

LED (light source)

Photodiode S =T < DMD+ALP
circuit 3 ™ - Board




“Single-Pixel” Camera

LED (light source)

PhotodiodeA b BT DMD+ALP
circuit B S 2 Board




“Single-Pixel” Camera

LED (light source)

Photodiode S .- DMD+ALP
circuit SR e 2 Board




Slashdot_

News for Nerds. Stuff that matters.

oops, crash, seven million years bad luck !?!

| can’t wait to take this on my next vacation

This is me skydiving
:I'his is me swimming with dolphins

:rhis is me at the grand canyon



First Images

16384 Fixels 16334 Pixels
{Jriginal 1600 Weasurements 3300 Measurements
(10%o) (20%0)

65536 Pixels 65536 Pixels
1300 MMeasurements 3300 Deasurements
(2%0) (5%0)




World’s First Photograph

e 1826, Joseph Niepce
e Farm buildings and sky
e 8 hour exposure




Color Imaging

Merging RGB channels

4096 Pixels 4096 Pixels

Two strategies: 800 (20%) 1600 (40%)
1. Prism assembly ﬂ Measurements  Measurements
2. Layered White
Light
Sensors I;f'mt

(ala Foveon) i

Foveon |
Image Array




“Single-Pixel” Camera

© MIT Tech Review

-

single
photon
detector
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Low-Light Imaging with PMT

True color low-light imaging:
256 x 256 image with 10:1

compression

Incoming Photomultiplier Tube

Photon\ Window

Photo- / { Dynodes n 1 Anode f‘

cathode

Focusing

Electrode :
{Ioltage l.)roppiné
Resistors
Figure 1




IR Imaging

100%



IR Imaging

Raster scans: nght from only one pixel

32x 32 128><128

Compressive sensing:

Light from half the pixels

256 X 256



Hyperspectral Imaging

Sum of all bands Real target




Hyperspectral Imaging




THz Imaging

object mask random

to be imaged pattern on

THz transmitter : a planar
/ screen

(fiber-coupled \ THz receiver
PC antenna) /I /

Object mask 300 600
measurements measurements

[Mittleman Group, Rice University]



THz Imaging: Sampling in Fourier

object metal

mask i
aperture THz receiver

L

THz transmitter

—
==

variable object

position translation

stage

6.4 cm

6.4 cm
6 cm

Fourier Transform CPR Reconstruction CSPR Reconstruction
of object (4096 measurements) (1000 measurements)

(Magnitude-only)
[Mittleman Group, Rice University]



Compressive ADCs

DARPA “Analog-to-information” program:
Build high-rate ADC for signals with sparse spectra
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Compressive ADCs

DARPA “Analog-to-information” program:
Build high-rate ADC for signals with sparse spectra
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Analog-to-Information Conversion

e Many applications - particularly in RF - have hit an ADC
performance brick wall

- limited bandwidth (# Hz)
- limited dynamic range (# bits)
- deluge of bits to process downstream

e “Moore’s Law” for ADC’s:
doubling in performance o
only every 6 years B

 Inspiration from CS:

- “analog-to-information”
conversion




Random Demodulator

/ Integrator Sample-and-Hold Quantizer \
x(t) X pe(t)
x(t) / I ; :_, ._::ﬂF'_J:—. > y[n]
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>
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[Tropp, Laska, Duarte, Romberg, and Baraniuk - 2010]



Random Demodulator
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Random Demodulator
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Sampling Rate Hz (M)
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1.69S5log(N/S + 1) + 4.51 1.71Slog(N/S +1) + 1

M ~ 1.75log(N/S + 1)

[Tropp, Laska, Duarte, Romberg, and Baraniuk - 2010]
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Compressive Multiplexor
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e ¥ is more digital
T pa(®) |
Compressive Multiplexor

[Slavinsky, Laska, D, and Baraniuk - 2011]



Compressive Multiplexor in Hardware

e Boils down to: The +; Bank
- 1 LFSR
- J switches
- 2J resistors * |
Single
- 2 Op amps Channel —> y[n]

ADC

1 low-rate ADC

I R
LFSR

The “—1” Bank

1.1mm x 1.1mm ASIC on its way!

[Slavinsky, Laska, D, and Baraniuk - 2011]




Compressive ADCs: Challenges Ahead

o Calibration!
- you must know @ to recover (or do anything else)
- big challenge for all approaches
- can often be mitigated by certain design choices

e Algorithms

- recovery algorithms are much faster than a few years ago,
but still can’t operate in real time on GHz bandwidths

- is recovery always necessary?

e Applications
- noise can be a problem
- good signal models are key



Compressive Sensors Wrap-up

e CSis built on a theory of random measurements
- Gaussian, Bernoulli, random Fourier, fast JLT
- stable, universal, democratic

« Randomness can often be built into real-world sensors
- tomography
- cameras
- compressive ADCs
- microscopes, sensor networks, DNA microarrays, radar, ...

e OK, we can build these devices. What are they actually
good for? When are they appropriate?



