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ABSTRACT

In this paper, we provide a dictionary for representing the dis-
crete vector one obtains when collecting a finite set of uniform
samples from a baseband analog signal. Like the discrete pro-
late spheroidal sequences (DPSS’s), the proposed orthogonal
basis compactly captures most of the energy in oversampled
bandlimited signals. The complexity of computing the repre-
sentation of a signal using the proposed dictionary is compa-
rable to the FFT, which is much less than that involving the
DPSS basis. We also give non-asymptotic results to guarantee
that the proposed basis not only provides a very high degree
of approximation accuracy in an MSE sense for bandlimited
sample vectors, but also that it can provide high-quality ap-
proximations of all sampled sinusoids within the band of in-
terest.

Index Terms— Discrete prolate spheroidal sequences,
fast Fourier transform, bandlimited signal, signal approxima-
tion

1. INTRODUCTION

The Nyquist-Shannon sampling theorem guarantees that real
world signals that are bandlimited (or can be made bandlim-
ited by filtering) can be replaced by a discrete sequence of
their samples without the loss of any information and pro-
cessed digitally. The discrete Fourier transform (DFT) for
digital signals and has been widely used for many applica-
tions in engineering, mathematics, and science thanks to the
fast Fourier tranform (FFT), an efficient algorithm for com-
puting the DFT.

However, due to the fact that windowing in time domain
will spread out the spectrum in the frequency domain, the
DFT suffers from frequency leakage when used to represent
a finite-length vector arising from a bandlimited signal with
narrowband spectrum, or ever a pure sinusoid. Such a prob-
lem can be mitigated to some degree by applying a window-
ing function in the sampling system. Alternatively, one can
compactly represent the signals using a basis of timelimited
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discrete prolate spheroidal sequences (DPSS’s). DPSS’s, first
introduced by Slepian in 1978 [1], are a collection of orthogo-
nal bandlimited sequences that are most concentrated in time
to a given index range. When limited in the time domain,
they provide a compact (and again orthogonal) representa-
tion for sampled bandlimited signals. Owing to their concen-
tration in the time and frequency domains, the DPSS’s have
been successfully used in numerous signal processing appli-
cations such as time-variant channel estimation [2, 3], super-
resolution [4], mitigating wall cluter and detecting non-point
targets in through-the-wall radar imaging [5–7], signal recov-
ery from compressive measurements [8, 9], and so on.

Unlike the DFT which can be computed efficiently with
FFT, there exists no algorithm that can efficiently compute
the DPSS representation for a very large signal. Recently,
we proposed [10] a fast method for computing approximate
projections onto the leading DPSS vectors and compressing
a signal to the corresponding low dimension. In this paper,
we illustrate an alternative orthonormal basis that compactly
captures most of the energy in sampled bandlimited signals,
and the representation for an arbitrary vector in this basis can
be computed efficiently. Moreover, one of the main contribu-
tions of this paper is to confirm that such an orthonormal basis
not only provides a very high degree of approximation accu-
racy in a mean squared error (MSE) sense for baseband sam-
ple vectors, but also that it can provide high-quality approx-
imations for all sample vectors of sinusoids with frequencies
in the band of interest. The remainder of this paper is orga-
nized as follows. Section 2 provides some important back-
ground information on DPSS’s. We state our main results in
Section 3. In Section 4, we present some experiments to il-
lustrate the effectiveness of our proposed approximations.

2. DPSS BASES

To begin, we briefly review some important definitions and
properties of DPSS’s.

For any W ∈ (0, 12 ), let BW : `2(Z) → `2(Z) de-
note a bandlimiting operator that bandlimits the discrete-time
Fourier transform (DTFT) of a discrete-time signal to the
frequency range [−W,W ] (and returns the corresponding
signal in the time domain). In addition, for any N ∈ N, let
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TN : `2(Z) → `2(Z) denote the timelimiting operator that
zeros out all entries outside the index range {0, 1, . . . , N−1}.

Definition 1. (DPSS’s [1]) Given W ∈ (0, 12 ) and N ∈
N, the Discrete Prolate Spheroidal Sequences (DPSS’s)
{s(0)N,W , s

(1)
N,W , . . . , s

(N−1)
N,W } are real-valued discrete-time

sequences that satisfy BW (TN (s
(l)
N,W )) = λ

(l)
N,W s

(l)
N,W for

all l ∈ {0, . . . , N − 1}. Here λ
(0)
N,W , . . . , λ

(N−1)
N,W are

the eigenvalues of the operator B[−W,W ]TN with order

1 > λ
(0)
N,W > λ

(1)
N,W > · · · > λ

(N−1)
N,W > 0.

Definition 2. (DPSS vectors [1]) GivenW ∈ (0, 12 ) andN ∈
N, the DPSS vectors s(0)N,W s

(1)
N,W , . . . , s

(N−1)
N,W ∈ RN are de-

fined by limiting the DPSS’s to the index range {0, 1, . . . , N−
1}, i.e.,

s
(l)
N,W [n] = s

(l)
N,W [n]

and satisfy

BN,Ws
(l)
N,W = λ

(l)
N,Ws

(l)
N,W ,

where BN,W ∈ CN×N is the prolate matrix with elements

BN,W [m,n] =
sin (2πW (m− n))

π(m− n)
.

Let SN,W denote an N ×N matrix whose l-th column is
the DPSS vector s(l)N,W for all l = 0, . . . , N − 1 and ΛN,W

be an N × N diagonal matrix with diagonal entries being
the DPSS eigenvalues λ(0)N,W , . . . , λ

(N−1)
N,W . The prolate matrix

BN,W can be factorized as

BN,W = SN,WΛN,WS∗N,W ,

which is an eigendecompostion of BN,W . Here A∗ repre-
sents the conjugate transpose of A. The DPSS’s are orthogo-
nal on Z and on {0, 1, . . . , N − 1}, and they are normalized
so that

〈TN (s
(k)
N,W ), TN (s

(l)
N,W )〉 =

{
1, k = l,

0, k 6= l.

Consequently, it can be shown [1] that ‖s(l)N,W ‖22 = 1

λ
(l)
N,W

.

Thus, when λ(l)N,W is close to 1, the corresponding DPSS vec-

tor s
(l)
N,W has energy mostly concentrated in the frequency

range [−W,W ]. On the other hand when λ(l)N,W is close to

0, the corresponding DPSS vector s(l)N,W has most of its en-
ergy outside the frequency range [−W,W ]. These proper-
ties, along with the following result on the distribution of the
eigenvalues λ(l)N,W , make the DPSS’s a suitable basis to pro-
vide a compact representation for sampled bandlimited sig-
nals.

Theorem 1. (Concentration of the spectrum [1, 9–11].) For
any W ∈ (0, 12 ), N ∈ N, and ε ∈ (0, 12 ), we have

λ
(b2NWc−1)
N,W ≥ 1

2
≥ λ(d2NWe)N,W

and

#{ε ≤ λ(l)N,W ≤ 1− ε} ≤ 2CN log

(
15

ε

)
,

where CN = 4
π2 log(8N) + 6.

Here bac denotes the largest integer that is not greater than
a and dae denotes the smallest integer that is not smaller than
a. Theorem 1 implies that the first ≈ 2NW eigenvalues tend
to cluster very close to 1, while the remaining eigenvalues
tend to cluster very close to 0, after a narrow transition of
width O(log(N) log(1ε )).

Define

ef := [ej2πf0 ej2πf1 · · · ej2πf(N−1)]T ∈ CN

for all f ∈ [− 1
2 ,

1
2 ] as the sampled exponentials, where

T represents the transpose operator. For any integer K ∈
{1, 2, . . . , N}, let SK := [SN,W ]K denote the N × K ma-
trix formed by taking the first K DPSS vectors. Note that for
any orthonormal matrix Q ∈ CN×K ,

1

2W

∫ W

−W
‖ef −QQ∗ef‖22 df

=
1

2W
trace (BN,W −QQ∗BN,W ) .

(1)

This implies that SK is the best basis of K columns to repre-
sent all sampled sinusoids {ef}f∈[−W,W ] in the least-squares
sense. Formally,

1

2W

∫ W

−W
||ef − SKS∗Kef ||22df =

1

2W

N−1∑
l=K

λ
(l)
N,W ,

whereas for each f ∈ [−W,W ], ‖ef‖22 = N . It follows from
Theorem 1 that SK provides very accurate approximations
(in an MSE sense) for all sampled sinusoids {ef}f∈[−W,W ] if
one chooses K slightly larger than 2NW .

We note that any representation guarantee for sampled si-
nusoids {ef}f∈[−W,W ] can also be used for finite-length sam-
ple vectors arising from sampling random bandlimited base-
band signals. Suppose x is a continuous-time, zero-mean,
wide sense stationary random process with power spectrum

Px(F ) =

{
1

Bband
, F ∈ [−Bband

2 , Bband
2 ],

0, otherwise.

Let x = [x(0) x(Ts) · · · x((N − 1)Ts)]
T ∈ CN denote a

finite vector of samples acquired from x(t) with a sampling
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interval of Ts ≤ 1/Bband. Let fc = FcTs and W = BbandTs

2 .
We have [9]

E
[
||x−QQ∗x||22

]
=

1

2W

∫ W

−W
||ef −QQ∗ef ||22df. (2)

Let FN,W denote the partial normalized DFT matrix with the
lowest 2bNW c+ 1 frequency DFT vectors of length N , i.e.,

FN,W =
[

1√
N
e− bNWc

N
· · · 1√

N
e bNWc

N

]
.

It follows that FN,WF ∗N,W is an orthogonal projector onto
the column space of FN,W . The following result states
that the difference between the prolate matrix BN,W and
FN,WF ∗N,W is effectively low rank.

Theorem 2. [10] LetN ∈ N andW ∈ (0, 12 ) be given. Then
for any ε ∈ (0, 12 ), there exist N ×N matrices L and E such
that

BN,W = FN,WF ∗N,W +L+E,

where

rank(L) ≤ CN log

(
15

ε

)
, ‖E‖ ≤ ε.

Here CN is the constant specified in Theorem 1.

This result is a key factor in fast computing an approxi-
mate compression onto the Slepian basis in [10] and will play
an important role in the following computation of fast orthog-
onal approximations of sampled sinusoids and bandlimited
signals.

3. FAST ORTHOGONAL APPROXIMATIONS

In [10], we demonstrated a fast method to approximately
project an arbitrary vector onto the subspace spanned by
the first slightly more than 2NW eigenvectors of BN,W

by utilizing the fact that the difference between BN,W and
FN,WF ∗N,W approximately has a rank of O(logN) (see
Theorem 2). Note that, in [10], the approximate projection
is not a true projection onto any subspace. Here, we exhibit
a subspace that captures most of the energy in the sampled
sinusoids within the band of interest, and this subspace has
an orthogonal projector that can be applied efficiently to an
arbitrary vector.

By utilizing the result that BN,W − FN,WF ∗N,W is ap-
proximately low rank and also that FN,W can be applied
to a vector efficiently with the FFT, we build our subspace
with an orthonormal basis of the form Q =

[
FN,W Q′

]
,

where Q′ ∈ CN×R for some R that we can choose as de-
sired. Let FN,W denote the N × (N − 2bNW c − 1) matrix
with the highest frequency N − 2bNW c − 1 DFT vectors of
length N . Thus FN :=

[
FN,W FN,W

]
is the normalized

DFT matrix. Since Q′ must be orthogonal to FN,W and the

columns of Q′ must be orthonormal, we can represent Q′ by
Q′ = FN,WV , where V ∈ C(N−2bNWc−1)×R is orthonor-
mal (one can verify that F ∗N,WQ′ = 0 and (Q′)∗Q′ = I).

Plugging Q =
[
FN,W FN,WV

]
into (1) yields∫ W

−W
‖ef −QQ∗ef‖22 df

= trace
(
F
∗
N,WBN,WFN,W − V V ∗F

∗
N,WBN,WFN,W

)
which suggests that setting V equal to the R dominant left
singular vectors of F

∗
N,WBN,W (or F

∗
N,WBN,WFN,W ) re-

sults in a relatively small representation residual in the right
hand of the above equation as long as F

∗
N,WBN,W has an

effective rank of R. The following result provides a formal
guarantee on this.

Theorem 3. (Average representation error) Fix W ∈ (0, 12 )

and N ∈ N. Let V ∈ C(N−2bNWc−1)×R contain the R
dominant left singular vectors of F

∗
N,WBN,W . Then for any

ε ∈ (0, 12 ), the orthobasis Q =
[
FN,W FN,WV

]
satisfies

1

2W

∫ W

−W

‖ef −QQ∗ef‖22
‖ef‖22

df ≤ ε

with

R = max

{⌈
CN log

(
15CN
2NWε

)⌉
, 0

}
.

Here CN is the constant specified in Theorem 1.

A similar approximation guarantee holds for sampled vec-
tors arising from sampling random bandlimited signals by us-
ing (2). We note that we are not guaranteed that ‖QQ∗ −
SKS∗K‖ is small since in general ‖QQ∗ − SKS∗K‖ = 1 if
Q and SK have a different number of columns. However, we
are guaranteed that the subspace spanned by the columns of
SK is approximately within the column space of Q by the
following result.

Theorem 4. (Representation guarantee for DPSS vectors)
Fix N ∈ N and W ∈ (0, 12 ). Let V ∈ C(N−2bNWc−1)×R

be the R dominant left singular vectors of F
∗
N,WBN,W . For

any ε ∈ (0, 12 ), fix K to be such that λ(K−1)N,W ≥ ε. Then the
orthobasis Q =

[
FN,W FN,WV

]
satisfies

‖SKS∗K −QQ∗SKS∗K‖2 ≤ ε

‖s(l)N,W −QQ∗s
(l)
N,W ‖ ≤ ε

for all l = 0, 1, . . . ,K − 1 with R = dCN log (15/ε)e . Here
CN is the constant specified in Theorem 1.

Note that the bound on ‖SKS∗K−QQ∗SKS∗K‖ is useful
since for any vector a ∈ CN

‖a−QQ∗a‖
≤ ‖a−QQ∗SKS∗Ka‖
≤ ‖a− SKS∗Ka‖+ ‖SKS∗K −QQ∗SKS∗K‖‖a‖
≤ ‖a− SKS∗Ka‖+

√
ε‖a‖,
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which implies any representation guarantee for SK can be
utilized for Q.

In [11], we rigorously show that every discrete-time si-
nusoid with a frequency f ∈ [−W,W ] is well-approximated
by the DPSS basis SK with K slightly larger than 2NW .
The proof is based on an asymptotic result on the DTFT of
the DPSS basis functions (which are known as discrete pro-
late spheroidal wave functions (DPSWF’s)) and the result is
thus asymptotic. Here we use a different approach to obtain a
non-asymptotic guarantee for approximating every discrete-
time sinusoid with a frequency f ∈ [−W,W ]. Noting that
‖ef −QQ∗ef‖22 is differentiable everywhere, we first show
that its derivative is bounded above by 2πN2. Then by utiliz-
ing the previous result on

∫W
−W ‖ef −QQ∗ef‖22 df , we ob-

tain a similar bound on ‖ef −QQ∗ef‖22.

Theorem 5. (Representation guarantee for pure sinusoids)
Fix N ∈ N and W ∈ (0, 12 ). Let V ∈ C(N−2bNWc−1)×R be
the R dominant left singular vectors of F

∗
N,WBN,W . Then

for any ε ∈ (0, 12 ), the orthobasis Q =
[
FN,W FN,WV

]
satisfies

‖ef −QQ∗ef‖22
‖ef‖22

≤ ε

for all f ∈ [−W,W ] with

R = max

{
CN log

(
60πCN
ε2

)
, CN log

(
15CN
NWε

)}
+ 1.

Here CN is the constant specified in Theorem 1.

Finally, we remark that for Q =
[
FN,W FN,WV

]
with

V ∈ C(N−2bNWc−1)×R, both Q and Q∗ can be applied to a
vector in O(N logN + NR). As an example, for any a ∈
CN , ã =

[
FN,W FN,W

]H
a can be efficiently computed

by the FFT with complexity O(N logN). Then V ∗ã2 can be
computed via conventional matrix-vector multiplication with
complexity O(NR), where ã2 is the sub-vector obtained by
taking the last N − 2bNW c − 1 entries of ã2. Thus the total
computational complexity for Q∗a isO(N logN+NR). We
note that R is in the order of at most logN log( logNWε2 ) for
Theorems 3-5.

4. SIMULATIONS

In this section, we present some experiments to illustrate the
effectiveness of our proposed fast approximation algorithm
ROAST (which is short for Rapid Orthogonal Approximate
Slepian Transform).

For comparison, we also compute the projection onto the
column space of FN,W+ R

2N
which is theN×(2bNW c+1+

R) DFT matrix with frequencies in [−W − R
2N ,W + R

2N ].
Such a projection is simply denoted by Sub-DFT. Note
that the dimension of the column space of FN,W+ R

2N
is

2bNW c+1+R and is equal to the dimension of the column
space of Q.

Fig. 1(a) shows the ability of the different projections to
capture a given sinusoid in terms of

SNR = 20 log10

(
‖ef‖2

‖ef − êf‖2

)
dB,

where êf is the resulting projection of ef by the above men-
tioned methods.

Also, we generate a sampled bandlimited signal x by
adding 5000 complex exponentials with frequencies selected
uniformly at random within the frequency band [−W,W ].
Fig. 1(b) shows the ability of the different projections to
capture sampled bandlimited signals in terms of SNR.

Finally, Fig. 2 plots SNR as a function of dimension N
and the relationship between the run time and N for the three
projection methods. In this experiment, we fixR = 4 log(N).
As observed, the running time of DPSS has a quadratic in-
crease, while ROAST is nearly as fast as the DFT, but with
much better approximation performance.

−0.5 0 0.5

0

50

100

150

200

250

f

S
N
R

(d
B
)

 

 

Sub-DFT
DPSS
ROAST

(a)

0 5 10 15 20
0

50

100

150

200

R
S
N
R

(d
B
)

 

 

Sub−DFT

DPSS

ROAST

(b)

Fig. 1. (a) SNR captured by different projections for pure si-
nusoids ef withR = 4 log(N); (b) SNR captured by different
projections for a sampled bandlimited signal x with R rang-
ing from 0 to 4 log(N). Here N = 1024, W = 1
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