
Simultaneous Recovery of A Series of Low-rank
Matrices by Locally Weighted Matrix Smoothing

Liangbei Xu and Mark A. Davenport
Georgia Institute of Technology

Email: {lxu66, mdav}@gatech.edu

Abstract—Low-rank matrix factorizations arise in
a wide variety of applications – including recommen-
dation systems, topic models, and source separation,
to name just a few. There exist both empirical and
theoretical results showing that, under some dynamic
models, significant improvements can be obtained by
incorporating temporal information and allowing for
the possibility that the underlying matrix is time-
varying. In this paper we propose the S-LOWEMS
estimator, which simultaneously recovers a series of
low-rank matrices based on the locally weighted ma-
trix smoothing (LOWEMS) framework. Our synthetic
simulations and real world experiments show that,
compared to the original LOWEMS estimator, the
proposed S-LOWEMS estimator not only recovers a
series of low-rank matrices with a small computational
overhead, but also improves the recovery accuracy and
reduces the sample complexity.

I. Introduction

In recent years there has been a significant amount
of progress in our understanding of how to recover a
low-rank matrix X from incomplete observations even
when the number of observations is much less than the
number of entries in X. (See [1] for an overview of
this literature.) Nearly all of this existing work assumes
that the underlying low-rank matrix X remains fixed
throughout the measurement process. In many practical
applications, this is a tremendous limitation. For example,
users’ preferences for various items may change (some-
times quite dramatically) over time. Modelling such drift
of user’s preference has been proposed in the context of
both music and movie recommendation as a way to achieve
higher recommendation accuracy [2]. Another example
in signal processing is dynamic non-negative matrix
factorization for the blind signal separation problem [3].
In these and many other applications, explicitly modeling
the dynamic structure in the data has led to superior
empirical performance.

There has been some recent theoretical progress in the
context of dynamic low-rank matrix recovery, including [4],
which provides recovery guarantees when one of the factor
matrices of the underlying low-rank matrix is changing
over time and [5], which uses a temporal regularizer to
exploit the temporal dependence. In this paper we extend
the approach of [4] by designing a two-stage estimator in
the context of estimating a sequence of low-rank matrices
simultaneously under a discrete random walk model.

II. Problem Setup

The underlying assumption throughout this paper is
that our low-rank matrix is changing over time throughout
the measurement process, that is, rather than observations
of a fixed matrix X, we are given observations of a
sequence of (related) matrices X1, . . . , Xd. Note that
we can impose the low-rank constraint explicitly by
factorizing Xt as

Xt = U t
(
V t
)T
,

where U t ∈ Rn1×r, V t ∈ Rn2×r.
In general both U t and V t may be changing over time.

However, in many applications it is reasonable to assume
that only one set of factors is changing. For example, in
a recommendation system where our matrix represents
user preferences, if the rows correspond to items and
the columns correspond to users, then U t contains the
latent properties of the items and V t models the latent
preferences of the users. In this context it is reasonable to
assume that only V t changes over time (see [2]), and
that there is a fixed matrix U . In fact, without loss
of generality we may always assume that U is fixed
and orthonormal (since otherwise one can find another
equivalent factorization satisfying this assumption, e.g.,
via a QR factorization of U).

Now suppose that V satisfies the following discrete
random walk model up to d time steps:

V t+1 = V t + εt, t = 1, . . . , d− 1, (1)

where εt is the perturbation (or process) noise. We observe
Xt via the following linear measurement model:

yt = At(Xt) + zt, yt, zt ∈ Rm0 , (2)

where zt is measurement noise, m0 is the number of
measurements per time step, and At is a measurement op-
erator, which is a linear mapping from Rn1×n2 to Rm0 . We
can represent the ith entry ofA (X) by [A (X)]i = 〈Ai, X〉,
where Ai represents ith sensing matrix Ai. In this paper
we consider a special case where A samples a subset of
entries of X, it is known as the matrix completion problem.
Finally, we will also assume that both εt and zt are

i.i.d. zero-mean Gaussian noise with variance σ2
2 and

σ2
1 respectively. Our problem is to recover the sequence
{Xt}dt=1 from {yt}dt=1.

III. S-LOWEMS estimator
A. Maximum likelihood estimator

The first approach is to consider the recovery problem as
a latent factor learning problem. A maximum likelihood
estimator (MLE) is given by minimizing the following
negative log-likelihood:

L(U, V 1, . . . , V d) = 1
σ2

1

d∑
t=1

∥∥At (UV t)− yt∥∥2
2

+ 1
σ2

2

d∑
t=2

∥∥V t − V t−1∥∥2
F
.

(3)

The above cost function consists of two terms: the first
term quantifies data fidelity and the second term quantifies
the dynamic constraint on V . Although minimizing (3)
is a nonconvex optimization problem, we can attempt to
solve it via the alternating least squares (ALS) algorithm
over U and {V t}dt=1. Note however that in this case the
convergence of the ALS algorithm is not (known to be)
guaranteed and the computational burden is quite heavy
(especially when d is large, since we need to update all
V t’s at each update).

B. A fast estimator based on weighted smoothing
In this section we use the idea of weighted smoothing

from [4] to form a fast estimator of {Xt}dt=1. We first
introduce the LOWEMS estimator proposed in [4], which
is an algorithm that aims to produce an estimate of only
Xd from {yt}dt=1. The LOWEMS estimator consists of
solving the following optimization program:

X̂d = arg min
X∈C(r)

1
2

d∑
t=1

wt
∥∥At (X)− yt

∥∥2
2 , (4)

where C(r) = {X ∈ Rn1×n2 : rank(X) ≤ r}, and {wt}dt=1
are non-negative weights with constraint

∑d
t=1 wt = 1. If

we define κ := σ2
2/σ

2
1 and set pt = (d− t), 1 ≤ t ≤ d, then

one can calculate the optimal weights as [4]:

w∗t = 1∑d
i=1

1
1+piκ

1
1 + ptκ

, 1 ≤ t ≤ d. (5)

The parameter κ measures how strong the perturbation
noise is compared to the observation noise.

Note that one can modify LOWEMS to recover Xs for
any s ∈ [d] by solving the following similar program:

X̂s = arg min
X∈C(r)

1
2

d∑
t=1

wst
∥∥At (X)− yt

∥∥2
2 , (6)

where {wst }dt=1 are a different set of weights to be used
when estimating Xs. Following similar arguments in [4],
the optimal weights in this case are:

ws∗t = 1∑d
i=1

1
1+ps

i
κ

1
1 + pstκ

, 1 ≤ t ≤ d, (7)

where pst = |t− s|.

A naïve extension of the LOWEMS method to recover
Xs for all s ∈ [d] is to perform program (6) independently
for each s ∈ [d]. However this approach does not take
into account the fact that for all s ∈ [d], Xs should share
the same U . This clearly leaves some room for potential
improvement. Moreover, because the weights in (7) are
selected specifically to minimize the recovery error for
a particular Xs, the weights necessarily “downweight”
previous/future observations. This can be helpful in
obtaining a more accurate estimate of V s, but this can
actually be harmful in terms of our estimate of U (since
it is essentially using only a small subset of the data in
its estimate).

Inspired by this observation, we consider an alternative
method which, although still quite simple, has the poten-
tial to improve on the naïve approach described above.
Specifically, we conjecture that an equal weighting will
yield an improved estimate of U (or more precisely, the
column space of U) compared to the results of using (7)
for any particular choice of s. Thus, we first estimate U
from {yt}dt=1, and we then follow this step by estimating
{V t}dt=1 by solving (6) using (7) while holding U fixed.
This approach is summarized as follows:

Algorithm 1 S-LOWEMS: Simultaneously Locally
Weighted Matrix Smoothing
1: Given d, κ, {yt}dt=1 and {At}dt=1
2: Solve (6) with equal weights to obtain Û
3: For each s ∈ [d], solve (6) via least-squares with U =
Û and ws∗t in (7) to obtain V̂ s

4: Output the estimate X̂s = Û(V̂ s)T for all s ∈ [d]

Remark 1. One can solve (6) in step 2 via alternating
minimization (see e.g., [6]) or gradient descent (see e.g.,
[7]) based on matrix factorization.
Remark 2. Compared to MLE, Algorithm 1 is solving a
bi-convex relaxation of the objective in (3).
Remark 3. Compared to the naïve extension of LOWEMS,
the computational complexity of S-LOWEMS is actually
quite small. Instead of increasing the computational
complexity over a single LOWEMS by a factor of d, we
need only perform a single LOWEMS and then the only
additional computational overhead involves solving d least-
squares problems. The same is true when comparing to
MLE-ALS; we do not need to update all V t’s at each
update, which saves both storage and computation.
Remark 4. We conjecture that for each t ∈ [d], the
recovery error of S-LOWEMS is smaller than that of
a single LOWEMS estimator. However, we leave the proof
of this conjecture for future work.

IV. Simulations and Experienments
A. Synthetic simulations

In the following synthetic simulations we restrict our at-
tention to matrix completion, although we expect similar

10
-2

10
-1

10
0

σ
2

0

0.2

0.4

0.6

0.8
R

e
c
o

v
e

ry
 E

rr
o

r
Baseline one

Baseline two

LOWEMS

MLE-ALS

S-LOWEMS

Fig. 1: Recovery error under different levels of perturba-
tion noise.

results for other observation models. We use the relative
recovery error (RRE) at time d, i.e., ‖X̂d−Xd‖2

F /‖Xd‖2
F ,

as our recovery accuracy metric (similar results are
obtained when we look at the full sequence {Xt}dt=1).
We set n1 = 100, n2 = 50, d = 4 and r = 5. We first
generate entries of U and V d uniformly from [−0.5, 0.5]
and {V t}1

t=d−1 according to (1). We orthonormalize U
afterwards and generate yt according to (2). For the
purpose of illustration we consider two additional baselines
besides LOWEMS and MLE-ALS: baseline one is the
MLE assuming all V t’s have no dynamic constraints
(hence σ2 is infinity); baseline two is the MLE assuming
all V t’s are the same (hence σ2 is zero).

1). Recovery error. We set σ1 = 0.05. In the first
simulation, we vary the perturbation noise level σ2 while
keeping m0 = 4000. For every σ2 we perform 10 trials,
and show the average RRE. As one can see from Figure
1, when σ2 is small, all the three estimator LOWEMS,
MLE-ALS and S-LOWEMS achieve almost the same RRE
as baseline two. As σ2 grows, the RRE of LOWEMS will
increase due to the perturbation noise. However in this
case both S-LOWEMS and MLE-ALS achieve smaller
RRE compared to LOWEMS. Notice that only when σ2
is relatively large (compared to the matrix V itself, say
0.3) the RRE of S-LOWEMS is slightly larger than that
of MLE-ALS. We also note that increasing perturbation
noise (from 0.2 to 0.6) decreases the RRE of MLE-ALS.
The reason is that the perturbation noise is large enough
to help the recovery of U , and in turn reduce the RRE of
recovering Xd (though we suspect this would be rare in
practice).
In the second simulation, we vary the fraction of

observed entries p := m0/(n1n2) while keeping σ2 = 0.2
(moderate). From Figure 2, we can see that S-LOWEMS
almost achieves the best RRE (comparable to MLE-ALS)
under various p.

2). Sample complexity. In this simulation we vary p to

0 0.2 0.4 0.6 0.8 1

p

0

0.2

0.4

0.6

0.8

1

R
e
c
o
v
e
ry

 E
rr

o
r

Baseline one

Baseline two

LOWEMS

MLE-ALS

S-LOWEMS

Fig. 2: Recovery error under different percentages of
missing entries.

10
-3

10
-2

10
-1

10
0

σ
2

0

0.2

0.4

0.6

0.8

1

S
a

m
p

le
 C

o
m

p
le

x
it
y
 p

Baseline one

Baseline two

LOWEMS

MLE-ALS

S-LOWEMS

Fig. 3: Sample complexity under different levels of pertur-
bation noise.

empirically find the minimum sample complexity required
to guarantee successful recovery (RRE ≤ 0.06). We
compare the sample complexity of LOWEMS, MLE-ALS
and S-LOWEMS under various σ2 (σ1 is set as 0.02). For a
fixed σ2, the RRE is averaged over 10 trials. From Figure
3, we can see when the perturbation noise is small (less
than 0.04), the sample complexities of LOWEMS, MLE-
ALS and S-LOWEMS are almost the same as baseline
two. When the perturbation noise increases, the RRE of
the three estimators will increase due to the perturbation
noise and hence the sample complexity increases. As we
can see, in this case S-LOWEMS achieves a smaller sample
complexity compared to LOWEMS and a bit larger than
that of MLE-ALS (the price paid for not forming a MLE).

In general, our synthetic simulations demonstrate that
the proposed S-LOWEMS achieves better performance
(in terms of recovery error and sample complexity) than
LOWEMS, and comparable performance as MLE-ALS

with less computation and storage.

B. Real world experiments
We next test LOWEMS, MLE-ALS, and S-LOWEMS

in the context of a recommendation system using the
(truncated) Netflix dataset. We eliminate those movies
with few ratings and those users rating few movies, and
generate a truncated dataset with 3199 users, 1042 movies,
and 2462840 ratings. In this case the fraction of visible
entries in the rating matrix is ≈ 0.74. All the ratings are
distributed over a period of 2191 days.
For the sake of robustness, we additionally impose a

Frobenius norm penalty on the factor matrices U and V .
We keep the latest (in time) 10% of the ratings as a testing
set. The remaining ratings are split into a validation set
and a training set for the purpose of cross validation.
We divide the remaining ratings into d ∈ {1, 3, 6, 8} bins
respectively according to their timestamps so that each
bin contains the same number of ratings (see Figure 4). We
use 5-fold cross validation, and we keep 20% of the ratings
from the dth bin as a validation set. The number of latent
factors r is set to 10. The Frobenius norm regularization
parameter γ is set to 1. We also note that in practice
one likely has no prior information on σ1, σ2 and hence
κ. However, we use model selection techniques like cross
validation to select the best κ incorporating the unknown
prior information on measurement/perturbation noise.
We use root mean squared error (RMSE) to measure
prediction accuracy. Since alternating minimization uses
a random initialization, we generate 10 test RMSE’s.
Figure 5 shows that all the three temporal estimators
LOWEMS, MLE-ALS and S-LOWEMS improve the
testing RMSE with appropriate κ compared to the static
baseline (when d = 1). In addition, the testing RMSE of
S-LOWEMS is lower than that of LOWEMS and MLE-
ALS in general. Our results show that exploiting the fact
that the user factor matrix V is changing yields improved
prediction performance.

V. Conclusion
In this paper we investigate the low-rank matrix recov-

ery problem under a random walk setting. We propose
the S-LOWEMS estimator and analyze its recovery
performance by synthetic simulations and test it on
the truncated Netflix dataset. Our results show that,
compared to original LOWEMS estimator, the proposed
S-LOWEMS estimator not only recovers a series of low-
rank matrices simultaneously with a small computa-
tional overhead, but also improves the recovery accuracy
and sample complexity. Furthermore, the proposed S-
LOWEMS achieves almost the same statistical efficiency
as the MLE (especially when the perturbation noise is
small or moderate) and consumes significantly less storage
and computational resources. However our model has
several limitations. For example, we assume a random
walk model on one of the factor matrix. Some possible
future extensions of this work include incorporating more

Fig. 4: Ratings divided into 7 bins (6 for training and 1
for testing) on the truncated Netflix dataset.

Fig. 5: Experimental results on the truncated Netflix
dataset: prediction RMSE vs. number of time bins.

sophisticated dynamic models, more general observation
models (for example, one-bit observation in [8] and [9]),
and a theoretical analysis to obtain provable recovery
guarantees.

Acknowledgements
This was completed with support from the grants

AFOSR FA9550-14-1-0342 and NSF CCF-1350616 as well
as support from the Alfred P. Sloan Foundation.

References
[1] Mark Davenport and Justin Romberg, “An overview of low-rank

matrix recovery from incomplete observations,” IEEE J. Select.
Top. Signal Processing, vol. 10, no. 4, pp. 608–622, 2016.

[2] Yehuda Koren, “Collaborative filtering with temporal dynamics,”
Comm. ACM, vol. 53, no. 4, pp. 89–97, 2010.

[3] Nasser Mohammadiha, Paris Smaragdis, Ghazaleh Panahandeh,
and Simon Doclo, “A state-space approach to dynamic nonneg-
ative matrix factorization,” IEEE Trans. Signal Processing, vol.
63, no. 4, pp. 949–959, 2015.

[4] Liangbei Xu and Mark Davenport, “Dynamic matrix recovery
from incomplete observations under an exact low-rank con-
straint,” in Proc. Adv. in Neural Processing Systems (NIPS),
Barcelona, Spain, Dec. 2016.

[5] Hsiang-Fu Yu, Nikhil Rao, and Inderjit Dhillon, “Temporal
regularized matrix factorization for high-dimensional time series
prediction,” in Proc. Adv. in Neural Processing Systems (NIPS),
Barcelona, Spain, Dec. 2016, pp. 847–855.

[6] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi, “Low-
rank matrix completion using alternating minimization,” in
Proc. ACM Symp. Theory of Comput., Stanford, CA, June 2013.

[7] Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi
Soltanolkotabi, and Benjamin Recht, “Low-rank solutions of
linear matrix equations via procrustes flow,” arXiv preprint
arXiv:1507.03566, 2015.

[8] Mark Davenport, Yaniv Plan, Ewout van den Berg, and Mary
Wootters, “1-bit matrix completion,” Inform. Inference, vol. 3,
no. 3, pp. 189–223, 2014.

[9] Liangbei Xu and Mark Davenport, “Dynamic one-bit matrix
completion,” in Proc. Signal Processing with Adaptive Sparse
Structured Representations (SPARS), Lisbon, Portugal, June
2017.

	Introduction
	Problem Setup
	S-LOWEMS estimator
	Maximum likelihood estimator
	A fast estimator based on weighted smoothing

	Simulations and Experienments
	Synthetic simulations
	Real world experiments

	Conclusion
	References

