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Abstract

Random Observations on Random Observations:

Sparse Signal Acquisition and Processing

by

Mark A. Davenport

In recent years, signal processing has come under mounting pressure to accom-

modate the increasingly high-dimensional raw data generated by modern sensing

systems. Despite extraordinary advances in computational power, processing the

signals produced in application areas such as imaging, video, remote surveillance,

spectroscopy, and genomic data analysis continues to pose a tremendous challenge.

Fortunately, in many cases these high-dimensional signals contain relatively little in-

formation compared to their ambient dimensionality. For example, signals can often

be well-approximated as a sparse linear combination of elements from a known basis

or dictionary.

Traditionally, sparse models have been exploited only after acquisition, typically

for tasks such as compression. Recently, however, the applications of sparsity have

greatly expanded with the emergence of compressive sensing, a new approach to data

acquisition that directly exploits sparsity in order to acquire analog signals more

efficiently via a small set of more general, often randomized, linear measurements. If

properly chosen, the number of measurements can be much smaller than the number

of Nyquist-rate samples. A common theme in this research is the use of randomness in

signal acquisition, inspiring the design of hardware systems that directly implement

random measurement protocols.

This thesis builds on the field of compressive sensing and illustrates how sparsity

can be exploited to design efficient signal processing algorithms at all stages of the



information processing pipeline, with a particular focus on the manner in which ran-

domness can be exploited to design new kinds of acquisition systems for sparse signals.

Our key contributions include: (i) exploration and analysis of the appropriate prop-

erties for a sparse signal acquisition system; (ii) insight into the useful properties of

random measurement schemes; (iii) analysis of an important family of algorithms for

recovering sparse signals from random measurements; (iv) exploration of the impact

of noise, both structured and unstructured, in the context of random measurements;

and (v) algorithms that process random measurements to directly extract higher-level

information or solve inference problems without resorting to full-scale signal recovery,

reducing both the cost of signal acquisition and the complexity of the post-acquisition

processing.
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Chapter 1

Introduction

1.1 Models in Signal Processing

At its core, signal processing is concerned with efficient algorithms for acquiring

and extracting information from signals or data. In order to design such algorithms

for a particular problem, we must have accurate models for the signals of interest.

These can take the form of generative models, deterministic classes, or probabilistic

Bayesian models. In general, models are useful for incorporating a priori knowledge

to help distinguish classes of interesting or probable signals from uninteresting or

improbable signals, which can help us to efficiently and accurately acquire, process,

compress, and communicate data and information.

For much of its history, signal processing has focused on signals produced by

physical systems. Many natural and manmade systems can be modeled as linear

systems, thus, it is natural to consider signal models that complement this kind of

linear structure. This notion has been incorporated into modern signal processing by

modeling signals as vectors living in an appropriate vector space. This captures the

linear structure that we often desire, namely that if we add two signals together we

obtain a new, physically meaningful signal. Moreover, vector spaces allow us to apply

1



2

intuitions and tools from geometry in R3, such as lengths, distances, and angles, to

describe and compare our signals of interest. This is useful even when our signals live

in high-dimensional or infinite-dimensional spaces.

Such linear models are widely applicable and have been studied for many years.

For example, the theoretical foundation of digital signal processing (DSP) is the pio-

neering work of Whittaker, Nyquist, Kotelnikov, and Shannon [1–4] on the sampling

of continuous-time signals. Their results demonstrate that bandlimited, continuous-

time signals, which define a vector space, can be exactly recovered from a set of

uniformly-spaced samples taken at the Nyquist rate of twice the bandlimit. Capital-

izing on this discovery, signal processing has moved from the analog to the digital

domain and ridden the wave of Moore’s law. Digitization has enabled the creation of

sensing and processing systems that are more robust, flexible, cheaper and, therefore,

more widely-used than their analog counterparts.

As a result of this success, the amount of data generated by sensing systems has

grown from a trickle to a torrent. Unfortunately, in many important and emerging

applications, the resulting Nyquist rate is so high that we end up with too many

samples, at which point many algorithms become overwhelmed by the so-called “curse

of dimensionality” [5]. Alternatively, it may simply be too costly, or even physically

impossible, to build devices capable of acquiring samples at the necessary rate [6,

7]. Thus, despite extraordinary advances in computational power, acquiring and

processing signals in application areas such as imaging, video, remote surveillance,

spectroscopy, and genomic data analysis continues to pose a tremendous challenge.

Moreover, simple linear models often fail to capture much of the structure present in

such signals.

In response to these challenges, there has been a surge of interest in recent years

across many fields in a variety of low-dimensional signal models. Low-dimensional

models provide a mathematical framework for capturing the fact that in many cases
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(a) (b)

Figure 1.1: Sparse representation of an image via a multiscale wavelet transform. (a) Orig-
inal image (b) Wavelet representation. Large coefficients are represented by light pixels,
while small coefficients are represented by dark pixels. Observe that most of the wavelet
coefficients are near zero.

these high-dimensional signals contain relatively little information compared to their

ambient dimensionality. For example, signals can often be well-approximated as a

linear combination of just a few elements from a known basis or dictionary, in which

case we say that the signal is sparse. Sparsity has been exploited heavily in fields such

as image processing for tasks like compression and denoising [8], since the multiscale

wavelet transform [9] provides nearly sparse representations for natural images. An

example is shown in Figure 1.1. Sparsity also figures prominently in the theory of

statistical estimation and model selection [10] and in the study of the human visual

system [11].

Sparsity is a highly nonlinear model, since the choice of which dictionary elements

are used can change from signal to signal [12]. In fact, it is easy to show that the

set of all sparse signals consists of not one subspace but the union of a combinatorial

number of subspaces. As a result, we must turn to nonlinear algorithms in order to

exploit sparse models. This nonlinear nature has historically limited the use of sparse

models due to the apparent need for computationally complex algorithms in order to
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exploit sparsity. In recent years, however, there has been tremendous progress in the

design of efficient algorithms that exploit sparsity. In particular, sparsity lies at the

heart of the emerging field of compressive signal processing (CSP).

1.2 Compressive Signal Processing

1.2.1 Compressive sensing and signal acquisition

The Nyquist-Shannon sampling theorem states that a certain minimum amount

of sampling is required in order to perfectly capture an arbitrary bandlimited signal.

On the other hand, if our signal is sparse in a known basis, we can vastly reduce how

many numbers must be stored, far below the supposedly minimal number of required

samples. This suggests that for the case of sparse signals, we might be able to do

better than classical results would suggest. This is the fundamental idea behind the

emerging field of compressive sensing (CS) [13–19].

While this idea has only recently gained significant traction in the signal process-

ing community, there have been hints in this direction dating back as far as 1795

with the work of Prony on the estimation of the parameters associated with a small

number of complex exponentials sampled in the presence of noise [20]. The next

theoretical leap came in the early 1900’s, when Carathéodory showed that a positive

linear combination of any K sinusoids is uniquely determined by its value at t = 0

and at any other 2K points in time [21, 22]. This represents far fewer samples than

the number of Nyquist-rate samples when K is small and the range of possible fre-

quencies is large. We then fast-forward to the 1990’s, when this work was generalized

by Feng, Bresler, and Venkataramani, who proposed a practical sampling scheme for

acquiring signals consisting of K components with nonzero bandwidth (as opposed to

pure sinusoids), reaching somewhat similar conclusions [23–27]. Finally, in the early

2000’s Vetterli, Marziliano, and Blu proposed a sampling scheme for certain classes of
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non-bandlimited signals that are governed by only K parameters, showing that these

signals can be sampled and recovered from only 2K samples [28].

In a somewhat different setting, Beurling considered the problem of when we can

recover a signal by observing only a piece of its Fourier transform. He proposed

a method to extrapolate from these observations to determine the entire Fourier

transform [29]. One can show that if the signal consists of a finite number of impulses,

then Beurling’s approach will correctly recover the entire Fourier transform (of this

non-bandlimited signal) from any sufficiently large piece of its Fourier transform. His

approach — to find the signal with smallest `1 norm among all signals agreeing with

the acquired Fourier measurements — bears a remarkable resemblance to some of the

algorithms used in CS.

Building on these results, CS has emerged as a new framework for signal ac-

quisition and sensor design that enables a potentially large reduction in the cost of

acquiring signals that have a sparse or compressible representation. CS builds on the

work of Candès, Romberg, Tao [13–17], and Donoho [18], who showed that a signal

having a sparse representation can be recovered exactly from a small set of linear,

nonadaptive compressive measurements. However, CS differs from classical sampling

is two important respects. First, rather than sampling the signal at specific points

in time, CS systems typically acquire measurements in the form of inner products

between the signal and more general test functions. We will see in this thesis that

randomness often plays a key role in the design of these test functions. Secondly, the

two frameworks differ in the manner in which they deal with signal recovery, i.e., the

problem of recovering the original signal from the compressive measurements. In the

Nyquist-Shannon framework, signal recovery is achieved through sinc interpolation

— a linear process that requires little computation and has a simple interpretation.

In CS, however, signal recovery is achieved using nonlinear and relatively expensive

optimization-based or iterative algorithms [30–45]. See [46] for an overview of these
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methods.

CS has already had notable impacts on medical imaging [47–50]. In one study

it has been demonstrated to enable a speedup by a factor of seven in pediatric MRI

while preserving diagnostic quality [51]. Moreover, the broad applicability of this

framework has inspired research that extends the CS framework by proposing practi-

cal implementations for numerous applications, including sub-Nyquist sampling sys-

tems [52–55], compressive imaging architectures [56–58], and compressive sensor net-

works [59, 60].

1.2.2 Compressive domain processing

Despite the intense focus of the CS community on the problem of signal recovery,

it is not actually necessary in many signal processing applications. In fact, most of the

field of digital signal processing (DSP) is actually concerned with solving inference

problems, i.e., extracting only certain information from measurements. For example,

we might aim to detect the presence of a signal of interest, classify among a set of

possible candidate signals, estimate some function of the signal, or filter out a signal

that is not of interest before further processing. While one could always attempt

to recover the full signal from the compressive measurements and then solve such

problems using traditional DSP techniques, this approach is typically suboptimal in

terms of both accuracy and efficiency.

This thesis takes some initial steps towards a general framework for what we call

compressive signal processing (CSP), an alternative approach in which signal pro-

cessing problems are solved directly in the compressive measurement domain without

first resorting to a full-scale signal reconstruction. This can take on many meanings.

For example, in [61] sparsity is leveraged to perform classification with very few ran-

dom measurements, and a variety of additional approaches to detection, classification,

and estimation from compressive measurements are further examined in this thesis,
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along with an approach to filtering compressive measurements to remove interference.

A general theme of these efforts is that compressive measurements are information

scalable — complex inference tasks like recovery require many measurements, while

comparatively simple tasks like detection require far fewer measurements.

While this work builds on the CS framework, it also shares a close relationship

with the field of data streaming algorithms, which is concerned with processing large

streams of data using efficient algorithms. The data streaming community has ex-

amined a huge variety of problems over the past several years. In the data stream

setting, one is typically interested in estimating some function of the data stream

(such as an `p norm, a histogram, or a linear functional) based on a linear “sketch”.

For a concise review of these results see [62], or see [63] for a more recent overview of

data streaming algorithms in the context of CS. The results from this community also

demonstrate that in many cases it is possible to save in terms of both the required

number of measurements as well as the required amount of computation if we directly

solve the problem of interest without resorting to recovering the original signal. Note,

however, that while data streaming algorithms typically design a sketch to target a

specific problem of interest, the CSP approach is to use the same generic compressive

measurements to solve a wide range of potential inference problems.

1.3 Overview and Contributions

This thesis builds on the field of compressive sensing and illustrates how spar-

sity can be exploited to design efficient signal processing algorithms at all stages of

the information processing pipeline, with a particular focus on the manner in which

randomness can be exploited to design new kinds of acquisition systems for sparse

signals. Our key contributions include:

� exploration and analysis of the appropriate properties for a sparse signal acqui-
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sition system;

� insight into the useful properties of random measurement schemes;

� analysis of an important family of algorithms for recovering sparse signals from

random measurements;

� exploration of the impact of noise, both structured and unstructured, in the

context of random measurements; and

� algorithms that process random measurements to directly extract higher-level

information or solve inference problems without resorting to full-scale signal re-

covery, both reducing the cost of signal acquisition and reducing the complexity

of the post-acquisition processing.

For clarity, these contributions are organized into four parts.

In Part I we introduce the concept of sparse signal models. After a brief dis-

cussion of mathematical preliminaries and notation, Chapter 2 provides a review

of sparse and compressible models. Additionally, we give an overview of the sparse

approximation algorithms that will play a crucial role in CS.

Next, in Part II we describe methods for sparse signal acquisition. We begin this

discussion in Chapter 3 by exploring the properties that we will require our signal

acquisition system to satisfy to ensure that we preserve the information content of

sparse signals. This will lead us to the notion of stable embeddings and the restricted

isometry property (RIP). We will explore this property, providing an argument for its

necessity when dealing with certain kinds of noise, and providing a brief overview of

the theoretical implications of the RIP in CS. We will also establish lower bounds on

how many measurements are required for a matrix to satisfy the RIP.

Chapter 4 then describes an argument that certain random matrices will satisfy

the RIP. We begin with an overview of sub-Gaussian distributions — a family of
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probability distributions which behave like Gaussian distributions in a certain respect

in high dimensions. Specifically, we prove that sub-Gaussian distributions exhibit

a concentration of measure property, and then we exploit this property to argue

that when a sub-Gaussian matrix has sufficiently many rows, it will satisfy the RIP

with high probability. We also provide some discussion on the role of randomness

and probabilistic guarantees within the broader field of CS, and describe how these

techniques can also be extended to models beyond sparsity.

In Chapter 5 we discuss various strategies for implementing these kinds of mea-

surement techniques in systems for acquiring real-world signals. We primarily focus on

two signal acquisition architectures: the single-pixel camera and the random demodu-

lator. The single-pixel camera uses a Texas Instruments DMD array and a single light

sensor to optically compute inner products between an image and random patterns.

By changing these patterns over time, we can build up a collection of random mea-

surements of an image. The random demodulator provides a CS-inspired hardware

architecture for acquiring wideband analog signals. In both cases, we demonstrate

that we can adapt the finite-dimensional acquisition framework described in the pre-

vious chapters to acquire continuous-time, analog signals.

Part III shifts the focus to the problem of recovering sparse signals from the

kind of measurements produced by the systems described in Part II. Chapter 6

begins by providing an RIP-based theoretical framework for analyzing orthogonal

greedy algorithms. First, we provide an RIP-based analysis of the classical algorithm

of Orthogonal Matching Pursuit (OMP) when applied to recovering sparse signals

in the noise-free setting. We show that in this setting, if our measurement system

satisfies the RIP, then OMP will succeed in recovering a K-sparse signal in exactly

K iterations. We then extend this analysis and use the same techniques to establish

a simple proof that under even weaker assumptions, Regularized OMP (ROMP) will

also succeed in recovering K-sparse signals.
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Chapter 7 then analyzes the potential impact of noise on the acquisition and re-

covery processes. We first discuss the case where noise is added to the measurements,

and examine the performance of an oracle-assisted recovery algorithm. We conclude

that the performance of most standard sparse recovery algorithms is near-optimal in

that it matches the performance of an oracle-assisted algorithm. Moreover, in this

setting the impact of the noise is well-controlled in the sense that the resulting re-

covery error is comparable to the size of the measurement noise. We then consider

the case where noise is added to the signal itself. In the case of white noise we show

that compressive measurement systems will amplify this noise by an amount deter-

mined only by the number of measurements taken. Specifically, we observe that the

recovered signal-to-noise ratio will decrease by 3dB each time the number of mea-

surements is reduced by a factor of 2. This suggests that in low signal-to-noise ratio

(SNR) settings, CS-based acquisition systems will be highly susceptible to noise.

In Chapter 8 we consider the impact of more structured noise. Specifically, we

analyze the case where the noise itself is also sparse. We demonstrate that in addition

to satisfying the RIP, the same random matrices considered in Chapter 4 satisfy an

additional property that leads to measurements that are guaranteed to be robust to a

small number of arbitrary corruptions and to other forms of sparse measurement noise.

We propose an algorithm dubbed Justice Pursuit that can exploit this structure to

recover sparse signals in the presence of corruption. We then show that this structure

can be viewed as an example of a more general phenomenon. Specifically, we propose

a definition of democracy in the context of CS and leverage our analysis of Justice

Pursuit to show that random measurements are democratic. We conclude with a brief

discussion of the broader role of democracy in CS.

In Part IV we turn to the problem of directly processing compressive measure-

ments to filter or extract desired information. We begin in Chapter 9 with an

analysis of three fundamental signal processing problems: detection, classification,
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and estimation. In the case of signal detection and classification from random mea-

surements in the presence of Gaussian noise, we derive the optimal detector/classifier

and analyze its performance. We show that in the high SNR regime we can reliably

detect/classify with far fewer measurements than are required for recovery. We also

propose a simple and efficient approach to the estimation of linear functions of the

signal from random measurements. We argue that in all of these settings, we can

exploit sparsity and random measurements to enable the design of efficient, universal

acquisition hardware. While these choices do not exhaust the set of canonical signal

processing operations, we believe that they provide a strong initial foundation for

CSP.

Chapter 10 then analyzes the problem of filtering compressive measurements.

We begin with a simple method for suppressing sparse interference. We demonstrate

the relationship between this method and a key step in orthogonal greedy algorithms

and illustrate its application to the problem of signal recovery in the presence of

interference, or equivalently, signal recovery with partially known support. We then

generalize this method to more general filtering methods, with a particular focus on

the cancellation of bandlimited, but not necessarily sparse, interference.

We conclude with a summary of our findings, discussion of ongoing work, and

directions for future research in Chapter 11.

This thesis is the culmination of a variety of intensive collaborations. Where

appropriate, the first page of each chapter provides a footnote listing primary collab-

orators, who share credit for this work.



Part I

Sparse Signal Models



Chapter 2

Overview of Sparse Models

2.1 Mathematical Preliminaries

2.1.1 Vector spaces

Throughout this thesis, we will treat signals as real-valued functions having do-

mains that are either continuous or discrete, and either infinite or finite. These

assumptions will be made clear as necessary in each section. In the case of a discrete,

finite domain, we can view our signals as vectors in N -dimensional Euclidean space,

denoted by RN . We will denote the standard inner product in Euclidean space as

〈x, y〉 = yTx =
N∑
i=1

xiyi.

We will also make frequent use of the `p norms, which are defined for p ∈ [1,∞] as

‖x‖p =


(∑N

i=1 |xi|p
) 1

p
, p ∈ [1,∞);

max
i=1,2,...,N

|xi|, p =∞.
(2.1)

13
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p = 1 p = 2 p =∞

Figure 2.1: Unit balls in R2 for the `p norms for p = 1, 2,∞

The `p norms have notably different properties for different values of p. To illustrate

this, we show the unit ball, i.e., {x : ‖x‖p = 1}, induced by each of these norms in

R2 in Figure 2.1.

We typically use norms as a measure of the strength of a signal, or the size of an

error. For example, suppose we are given a signal x ∈ R2 and wish to approximate

it using a point in a one-dimensional subspace A. If we measure the approximation

error using an `p norm, then our task is to find the x̂ ∈ A that minimizes ‖x− x̂‖p.

The choice of p will have a significant effect on the properties of the resulting ap-

proximation error. An example is illustrated in Figure 2.2. To compute the closest

point in A to x using each `p norm, we can imagine growing an `p ball centered on x

until it intersects with A. This will be the point x̂ ∈ A that is closest to x in the `p

norm. We observe that larger p tends to spread out the error more evenly among the

two coefficients, while smaller p leads to an error that is more unevenly distributed

and tends to be sparse. This intuition generalizes to higher dimensions, and plays an

important role in the development of the theory of CS.

Finally, in some contexts it is useful to extend the notion of `p norms to the case

where p < 1. In this case, the “norm” defined in (2.1) fails to satisfy the triangle

inequality, so it is actually a quasinorm. Moreover, we will also make frequent use of

the notation ‖x‖0 := |supp(x)|, where supp(x) = {i : xi 6= 0} denotes the support of



15

A

x

x
A

x

x
A

x

x

p = 1 p = 2 p =∞

Figure 2.2: Best approximation of a point in R2 by a a one-dimensional subspace using
the `p norms for p = 1, 2,∞.

x. Note that ‖ · ‖0 is not even a quasinorm, but one can easily show that

lim
p→0
‖x‖pp = |supp(x)|,

justifying this choice of notation.

2.1.2 Bases

A set {ψi}Ni=1 is called a basis for RN if the vectors in the set span RN and are

linearly independent.1 This implies each vector in the space has a unique representa-

tion as a linear combination of these basis vectors. Specifically, for any x ∈ RN , there

exist (unique) coefficients {αi}Ni=1 such that

x =
N∑
i=1

αiψi.

Note that if we let Ψ denote the N ×N matrix with columns given by ψi and let α

denote the length-N vector with entries αi, then we can represent this more compactly

1In any N -dimensional vector space, a basis will always consist of exactly N vectors, since fewer
vectors are not sufficient to span the space, while if we add any additional vectors they are guaranteed
to be linearly dependent on some subset of existing basis elements.
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as

x = Ψα.

An important special case of a basis is an orthonormal basis (ONB), defined as a

set of vectors {ψi}Ni=1 that form a basis and whose elements are orthogonal and have

unit norm, meaning that

〈ψi, ψj〉 =


1, i = j;

0, i 6= j.

An ONB has the advantage that the coefficients α can be easily calculated as

αi = 〈x, ψi〉,

or

α = ΨTx

in matrix notation. This can easily be verified since the orthonormality of the columns

of Ψ means that ΨTΨ = I, where I denotes the N ×N identity matrix.

2.1.3 Notation

Before proceeding, we will set the remainder of our notation. We will use d·e and

b·c denote the ceiling and floor operators, respectively. We will use log throughout

to denote the natural logarithm. When it is necessary to refer to logarithms of other

bases, we will indicate this explicitly via a subscript as in log10. When taking a real

number as an argument, |x| denotes the absolute value of x, but when taking a set

Λ as an argument, |Λ| denotes the cardinality of Λ. By x|Λ we mean the length |Λ|

vector containing the entries of x indexed by Λ. When Λ ⊂ {1, 2, . . . , N} we let

Λc = {1, 2, . . . , N}\Λ.

We will let N (Φ) denote the null space of a matrix Φ, and R(Φ) the range, or
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column space, of Φ. By ΦΛ we mean the M × |Λ| matrix obtained by selecting

the columns of Φ indexed by Λ. We will assume throughout that when |Λ| ≤ M ,

ΦΛ is full rank, in which case we let Φ†Λ := (ΦT
ΛΦΛ)−1ΦT

Λ denote the Moore-Penrose

pseudoinverse of ΦΛ.

We denote the orthogonal projection operator onto R(Φ) by PΦ = ΦΦ†. When

considering projections onto R(ΦΛ), we will also use the simpler notation PΛ in place

of PΦΛ
. Similarly, P⊥Λ = (I − PΛ) is the orthogonal projection operator onto the

orthogonal complement of R(ΦΛ). We note that any orthogonal projection operator

P obeys P = P T = P 2.

Finally, we will let P(event) denote the probability of a given event, and we will

let

E(g(X)) =

∫ ∞
−∞

g(x)f(x) dx

denote the expected value of g(X), where X is a random variable with probability

density function f(x) defined on R.

2.2 Sparse Signals

2.2.1 Sparsity and nonlinear approximation

Sparse signal models provide a mathematical framework for capturing the fact

that in many cases these high-dimensional signals contain relatively little information

compared to their ambient dimensionality. Sparsity has long been exploited in signal

processing and approximation theory for tasks such as compression [12] and denois-

ing [8], and in statistics and learning theory as a method for avoiding overfitting [64].

Sparsity can be thought of as one incarnation of Occam’s razor — when faced with

many possible ways to represent a signal, the simplest choice is the best one.

Mathematically, we say that a signal x isK-sparse when it has at mostK nonzeros,
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i.e., ‖x‖0 ≤ K. We let

ΣK = {x : ‖x‖0 ≤ K} (2.2)

denote the set of all K-sparse signals. Typically, we will be dealing with signals that

are not themselves sparse, but which admit a sparse representation in some basis Ψ.

In this case we will still refer to x as being K-sparse, with the understanding that we

can express x as x = Ψα where ‖α‖0 ≤ K. When necessary, we will use Ψ(ΣK) to

denote the set of all signals that are K-sparse when represented in the basis Ψ.

As a traditional application of sparse models, we consider the problems of image

compression and image denoising. Most natural images are characterized by large

smooth or textured regions and relatively few sharp edges. Signals with this structure

are known to be very nearly sparse when represented using a multiscale wavelet

transform [9]. The wavelet transform consists of recursively dividing the image into

its low- and high-frequency components. The lowest frequency components provide

a coarse scale approximation of the image, while the higher frequency components

fill in the detail and resolve edges. Wavelet coefficients can be grouped into a tree-

like structure as shown in Figure 1.1. What we see when we compute a wavelet

transform of a typical natural image is that most coefficients are very small. Hence,

we can obtain a good approximation to the signal by setting the small coefficients to

zero, or thresholding the coefficients, to obtain a sparse representation of the image.

Figure 2.3 shows an example of such an image and its K-term approximation. This

is the heart of nonlinear approximation [12] — nonlinear because the choice of which

coefficients to keep in the approximation depends on the signal itself. Similarly, given

the knowledge that natural images are approximately sparse, this same thresholding

operation serves as an effective method for rejecting certain kinds of signal noise [8].
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(a) (b)

Figure 2.3: Sparse approximation of a natural image. (a) Original image (b) Approxima-
tion to image obtained by keeping only the largest 10% of the wavelet coefficients.

2.2.2 Geometry of sparse signals

Sparsity is a highly nonlinear signal model. This can be seen by observing that

given a pair of K-sparse signals, a linear combination of the two signals will in general

no longer be K sparse, since their supports may not overlap. That is, for any x, y ∈

ΣK , we do not necessarily have that x + y ∈ ΣK (although we do have that x + y ∈

Σ2K). This is illustrated in Figure 2.4, which shows Σ2 embedded in R3, i.e., the set

of all 2-sparse signals in R3.

While the set of sparse signals ΣK does not form a linear space, it does satisfy

a great deal of structure. Specifically, it consists of the union of all possible
(
N
K

)
subspaces. In Figure 2.4 we have only

(
3
2

)
= 3 possible subspaces, but for larger

values of N and K we must consider a potentially huge number of subspaces. This

will have significant algorithmic consequences in the development of the algorithms

for sparse approximation and sparse recovery described below.
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Figure 2.4: Union of subspaces defined by Σ2 ⊂ R3, i.e., the set of all 2-sparse signals in
R3.

2.2.3 Compressible signals

An important point in practice is that few real-world signals are truly sparse;

rather they are compressible, meaning that they can be well-approximated by a sparse

signal. We can quantify this by calculating the error incurred by approximating a

signal x by some x̂ ∈ ΣK :

σK(x)p = min
x̂∈ΣK

‖x− x̂‖p. (2.3)

If x ∈ ΣK , then clearly σK(x)p = 0 for any p. Moreover, one can easily show that

the thresholding strategy described above (keeping only the K largest coefficients)

results in the optimal approximation as measured by (2.3) for all `p norms.

Another way to think about compressible signals is to consider the rate of decay

of their coefficients. For many important classes of signals there exist bases such

that the coefficients obey a power law decay, in which case the signals are highly

compressible. Specifically, if x = Ψα and we sort the coefficients αi such that |α1| ≥

|α2| ≥ · · · ≥ |αN |, then we say that the coefficients obey a power law decay if there
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exist constants C1, q > 0 such that

|αi| ≤ C1i
−q.

The larger q is, the faster the magnitudes decay, and the more compressible a signal

is. Because the magnitudes of their coefficients decay so rapidly, compressible signals

can be represented accurately by K � N coefficients. Specifically, for such signals

there exist constants C2, r > 0 depending only on C1 and q such that

σK(x)2 ≤ C2K
−r.

In fact, one can show that σK(x)2 will decay asK−r if and only if the sorted coefficients

αi decay as i−r+1/2 [12].

2.3 Compressive Sensing

CS has emerged as a new framework for signal acquisition and sensor design that

enables a potentially large reduction in the cost of acquiring signals that have a

sparse or compressible representation [13–19]. Specifically, given a signal x ∈ RN ,

we consider measurement systems that acquire M linear measurements.2 We can

represent this process mathematically as

y = Φx, (2.4)

2Note that the standard CS framework assumes that x is a finite-length, discrete-time vector,
while in practice we will be interested in designing measurement systems for acquiring analog,
continuous-time signals. We will discuss how to extend this discrete formulation to the continuous-
time case in greater detail in Chapter 5, but for now we will just think of x as a finite-length window
of Nyquist-rate samples, and we will see later how to directly acquire compressive measurements
without first sampling at the Nyquist-rate.
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where Φ is an M ×N matrix and y ∈ RM . The matrix Φ represents a dimensionality

reduction, i.e., it maps RN , where N is generally large, into RM , where M is typically

much smaller than N . In this case, we refer to the measurements y as compressive

measurements.

There are two main theoretical questions in CS. First, how should we design Φ to

ensure that it preserves the information in the signal x? Secondly, how can we recover

the original signal x from the measurements y? In the absence of some additional

information concerning x, the answer is straightforward: we must ensure that Φ is

invertible, in which case we can simply recover the original signal via x = Φ−1y.

Unfortunately, this requires full measurements (setting M = N). In the case where

our data is sparse or compressible, the answers change dramatically. We will be able

to design matrices Φ with M � N and be able to recover the original signal accurately

and efficiently using a variety of practical algorithms.

We will address the question of how to design Φ in detail in Part II, but before we

do so it will be useful to first gain some intuition into how we will solve the second

problem of signal recovery. The challenge here is to somehow exploit the fact that x

lives in or near ΣK , or Ψ(ΣK) for some known basis Ψ. In the former case, we have

that y is a linear combination of at most K columns of Φ, while in the latter case y is a

combination of at most K columns of the matrix Φ̃ = ΦΨ. Without loss of generality,

we will restrict our attention to the case where x ∈ ΣK , since we can always reduce

the problem to this case via a simple substitution. Fortunately, the sparse recovery

problem has received significant attention over the years in the context of computing

sparse representations with overcomplete dictionaries.
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2.4 Computing Optimal Sparse Representations

Suppose that we are given a vector y and wish to represent y as a sparse linear

combination of the columns of an M × N matrix Φ. If M = N , then the answer is

trivial — Φ represents a basis, and so we simply compute the expansion coefficients

α and then threshold them to obtain the optimal sparse representation as described

in Section 2.2.3. The challenge arises when M < N . In this case, Φ is no longer

a basis, but rather an overcomplete dictionary, with the consequence that there is

(in general) no unique set of expansion coefficients. If we want to find the optimal

sparse representation, then we must somehow find the most compressible expansion,

or equivalently, we must search through all possible sets of K columns to find the

best K-sparse representation. Unfortunately, there are
(
N
K

)
possibilities, and so this

strategy becomes impossible for even extremely modest values of K and N .

In response to this challenge, over the years there have been various algorithms

and heuristics that have been proposed for solving this and closely related problems in

signal processing, statistics, and computer science. We now provide a brief overview

of some of the key algorithms that we will make use of in this thesis. We refer the

reader to [46] and references therein for a more thorough survey of these methods.

2.4.1 Basis Pursuit and optimization-based methods

We can formulate the sparse approximation problem as a nonconvex optimization

problem. Specifically, we would like to solve the problem

x̂ = arg min
x

‖x‖0 subject to Φx = y, (2.5)

i.e., we would like to find the sparsest x such that y = Φx. Of course, even if x is truly

K-sparse, adding even a small amount of noise to y will result in a solution to (2.5)

with M nonzeros, rather than K. To introduce some tolerance for noise and other
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errors, as well as robustness to compressible rather than sparse signals, we would

typically rather solve a slight variation to (2.5):

x̂ = arg min
x

‖x‖0 subject to ‖Φx− y‖2 ≤ ε. (2.6)

Note that we can express (2.6) in two alternative, but equivalent, manners. While

in many cases the choice for the parameter ε may by clear, in other cases it may be

more natural to specify a desired level of sparsity K. In this case we can consider the

related problem of

x̂ = arg min
x

‖Φx− y‖2 subject to ‖x‖0 ≤ K. (2.7)

Alternatively, we can also consider the unconstrained version of this problem:

x̂ = arg min
x

‖x‖0 + λ‖Φx− y‖2. (2.8)

Of course, all of these formulations are nonconvex, and hence potentially very difficult

to solve. In fact, one can show that for a general dictionary Φ, even finding a solution

that approximates the true minimum is NP-hard [62].

The difficulty in solving these problems arises from the fact that ‖ ·‖0 is a noncon-

vex function. Thus, one avenue for translating these problems into something more

tractable is to replace ‖ · ‖0 with its convex relaxation ‖ · ‖1. Thus, in the case of (2.5)

this yields

x̂ = arg min
x

‖x‖1 subject to y = Φx, (2.9)

and in the case of (2.6) we obtain

x̂ = arg min
x

‖x‖1 subject to ‖Φx− y‖2 ≤ ε. (2.10)
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We will refer to (2.9) as Basis Pursuit (BP), and (2.10) as Basis Pursuit De-Noising

(BPDN), following the terminology introduced in [65]. These problems can be posed

as linear programs and solved using a variety of methods.

Before discussing an example of one such method, we note that the use of `1

minimization to promote or exploit sparsity has a long history, dating back at least to

the work of Beurling on Fourier transform extrapolation from partial observations [29].

In a somewhat different context, in 1965 Logan [66] showed that a bandlimited signal

can be perfectly recovered in the presence of arbitrary corruptions on a small interval.

Again, the recovery method consists of searching for the bandlimited signal that is

closest to the observed signal in the `1 norm. This can be viewed as further validation

of the intuition gained from Figure 2.2 — the `1 norm is well-suited to sparse errors.

The use of `1 minimization on large problems finally became practical with the

explosion of computing power in the late 1970’s and early 1980’s. In one of its

first practical applications, it was demonstrated that geophysical signals consisting

of spike trains could be recovered from only the high-frequency components of these

signals by exploiting `1 minimization [67–69]. Finally, in the 1990’s there was a

renewed interest in these approaches within the signal processing community for the

purpose of finding sparse approximations to signals and images when represented

in overcomplete dictionaries or unions of bases [9, 65]. Meanwhile, the `1 variant of

(2.7) began to receive significant in the statistics literature as a method for variable

selection in regression known as LASSO [70].

Finally, we conclude with an illustrative example of an algorithm known as Fixed-

Point Continuation (FPC) which is designed to solve the `1 variant of (2.8) [40].

This approach is an iterative, gradient descent method that will bear a great deal

of similarity to some of the greedy methods described below, but which can actually

be proven to converge to the `1 optimum. The heart of the algorithm is a gradient
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descent step on the quadratic penalty term. Specifically, note that

∇‖y − Φx‖2
2 = 2ΦT (y − Φx).

At the `th iteration of the algorithm, we have an estimate x`, and thus the gradient

descent step would consist of

x`+1 = x` − τΦT (y − Φx`),

where τ is a parameter the user must set specifying the step size. This gradient

descent step is then followed by soft thresholding to complete the iteration. The full

algorithm for FPC is specified in Algorithm 1. We use soft(x, α) to denote the soft

thresholding, or shrinkage, operator:

[soft(x, α)]i =


xi − α, xi > α;

0, xi ∈ [−α, α];

xi + α, xi < α.

(2.11)

In our statement of the algorithm, we use r` to denote the residual y−Φx` and refer to

the step of computing h` = ΦT r` as the step of computing the proxy, for reasons that

will become clear when we draw parallels between FPC and the greedy algorithms

described below.

2.4.2 Greedy algorithms and iterative methods

While convex optimization techniques like FPC are powerful methods for com-

puting sparse representations, there are also a variety of greedy/iterative methods for

solving such problems. We emphasize that in practice, many `1 solvers are themselves

iterative algorithms, and in fact we will see that FPC is remarkably similar to some of
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Algorithm 1 Fixed-Point Continuation (FPC)

input: Φ, y, λ, τ , stopping criterion
initialize: r0 = y, x0 = 0, ` = 0
while not converged do

proxy: h` = ΦT r`

update: x`+1 = soft(x` − τh`, τ/λ)
r`+1 = y − Φx`+1

` = `+ 1
end while
output: x̂ = x`

the algorithms discussed below. However, the fundamental difference is that FPC is

actually proven to optimize an `1 objective function, while the methods below mostly

arose historically as simple heuristics that worked well in practice and do not claim to

optimize any such objective function. We will see later, however, that many of these

algorithms actually have similar performance guarantees to those of the seemingly

more powerful optimization-based approaches.

We begin with the oldest of these algorithms. Matching Pursuit (MP), shown in

Algorithm 2, provides the basic structure for all of the greedy algorithms to follow [71].

In the signal processing community, MP dates back to [71], but essentially the same

algorithm had been independently developed in a number of other fields even earlier.

In the context of feature selection for linear regression, the algorithm of Forward

Selection is nearly identical to MP [72, 73], as well as the onion peeling algorithms for

multiuser detection in digital communications [74].

At the beginning of each iteration of MP, r` = y−Φx` represents the residual, or

the part of y that we have not yet explained using our estimate of x. Each iteration

then forms the estimate h` = ΦT r`, which serves as a proxy, or very rough estimate,

of the part of x we have yet to identify. At this point, each algorithm will perform

an update using this proxy vector. A common theme among greedy algorithms is the

use of hard thresholding (as opposed to soft thresholding, which commonly arises in

the optimization-based approaches) to keep track of an index or indices that we wish
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Algorithm 2 Matching Pursuit (MP)

input: Φ, y, stopping criterion
initialize: r0 = y, x0 = 0, ` = 0
while not converged do

proxy: h` = ΦT r`

update: x`+1 = x` + hard(h`, 1)
r`+1 = y − Φx`+1

` = `+ 1
end while
output: x̂ = x`

to update. Specifically, we will define3

[hard(x,K)]i =


xi, |xi| is among the K largest elements of |x|;

0, otherwise.

(2.12)

MP applies hard directly to the proxy vector h` to pick a single coefficient to update,

and then simply uses the value of h` on that coefficient as the update step.

MP is also closely related to the more recently developed algorithm of Iterative

Hard Thresholding (IHT) [30]. The only difference between MP and IHT is that we

replace the update step x`+1 = x` + hard(h`, 1) with

x`+1 = hard
(
x` + h`, K

)
. (2.13)

This change allows IHT to be more aggressive at the beginning of the algorithm, but

ensures that after many iterations, ‖x`‖0 remains well-controlled.

However, the most common extension of MP is Orthogonal Matching Pursuit

(OMP) [71, 75, 76]. The algorithm, provided in Algorithm 3, is only slightly different

than MP. Both algorithms begin by forming the proxy vector h` and then identify-

3Note that we have defined our thresholding operator not by assigning it a threshold value, as
we did in (2.11), but by dictating the number of elements we wish to keep. This is to ensure that
|supp(hard(x,K))| = K. In the event that there are ties among the |xi|, we do not specify which xi
are kept. The algorithm designer is free to choose any tiebreaking method available.



29

Algorithm 3 Orthogonal Matching Pursuit (OMP)

input: Φ, y, stopping criterion
initialize: r0 = y, x0 = 0, Λ0 = ∅, ` = 0
while not converged do

proxy: h` = ΦT r`

identify: Λ`+1 = Λ` ∪ supp
(
hard(h`, 1)

)
update: x`+1 = arg minz: supp(z)⊆Λ`+1 ‖y − Φz‖2

r`+1 = y − Φx`+1

` = `+ 1
end while
output: x̂ = x`

ing the largest component of h`. However, where MP simply uses the thresholded

version of h` as the signal update, OMP does something more sophisticated — it

finds the least-squares optimal recovery among all signals living on the support of

the coefficients chosen in the first ` iterations. One can show that this will ensure

that once a particular coefficient has been selected, it will never be selected again

in a later iteration. Thus, we always have that ‖x`‖0 = `. Moreover, the output x̂

will be the least-squares optimal recovery among all signals living on supp(x̂). These

properties come at an increased computational cost per iteration over MP, but in

practice this additional computational cost can be justified, especially if it results in

a more accurate recovery and/or fewer iterations.

2.4.3 Picky Pursuits

In recent years, there have been a great many variants of OMP which have been

proposed and studied [33, 35, 37, 42–44]. These algorithms share many of the same

features. First, they all modify the identification step by selecting more than one

index to add to the active set Λ` at each iteration. In the case of Stagewise Orthogonal

Matching Pursuit (StOMP) [37], this is the only difference. The different approaches

vary in this step — some choose all of the coefficients that exceed some pre-specified

threshold, while others pick cK at a time for some parameter c.
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In a sense, these algorithms seem more greedy than OMP, since they potentially

add more than just one coefficient to Λ` at a time. However, as these algorithms

were developed they began to incorporate another feature — the ability to remove

coefficients from Λ`. While this capability was not present in StOMP, it began to

appear in Regularized Orthogonal Matching Pursuit (ROMP) [42, 43], which followed

StOMP in adding multiple indices at once, but carefully selected these indices to

ensure that they were comparable in size. Compressive Sampling Matching Pursuit

(CoSaMP) [44], Subspace Pursuit (SP) [35], and DThresh [33] take this one step fur-

ther by explicitly removing indices from Λ` at each iteration. While these algorithms

are still typically referred to as greedy algorithms, they are actually quite picky in

which coefficients they will retain after each iteration.

As an illustration of these algorithms, we will describe ROMP and CoSaMP in

some detail. We first briefly describe the difference between ROMP and OMP, which

lies only in the identification step: whereas OMP adds only one index to Λ` at each

iteration, ROMP adds up to K indices to Λ` at each iteration. Specifically, ROMP

first selects the indices corresponding to the K largest elements in magnitude of h`

(or all nonzero elements of h` if h` has fewer than K nonzeros), and denotes this set

as Ω`. The next step is to regularize this set so that the values are comparable in

magnitude. To do this, we define R(Ω`) := {Ω ⊆ Ω` : |h`i | ≤ 2|h`j| ∀i, j ∈ Ω}, and set

Ω`
0 := arg max

Ω∈R(Ω`)

‖h`|Ω‖2,

i.e., Ω`
0 is the set with maximal energy among all regularized subsets of Ω`. Setting

Λ`+1 = Λ` ∪Ω`
0, the remainder of the ROMP algorithm is identical to OMP. The full

algorithm is shown in Algorithm 4.

Finally, we conclude with a discussion of CoSaMP. CoSaMP, shown in Algorithm 5,

differs from OMP both in the identification step and in the update step. At each
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Algorithm 4 Regularized Orthogonal Matching Pursuit (ROMP)

input: Φ, y, K, stopping criterion
initialize: r0 = y, x0 = 0, Λ0 = ∅, ` = 0
while not converged do

proxy: h` = ΦT r`

identify: Ω` = supp(hard(h`, K))
Λ`+1 = Λ` ∪ regularize(Ω`)

update: x`+1 = arg minz: supp(z)⊆Λ`+1 ‖y − Φz‖2

r`+1 = y − Φx`+1

` = `+ 1
end while
output: x̂ = x` = arg minz: supp(z)⊆Λ` ‖y − Φz‖2

Algorithm 5 Compressive Sampling Matching Pursuit (CoSaMP)

input: Φ, y, K, stopping criterion
initialize: r0 = y, x0 = 0, Λ0 = ∅, ` = 0
while not converged do

proxy: h` = ΦT r`

identify: Λ`+1 = supp(x`) ∪ supp(hard(h`, 2K))
update: x̃ = arg minz: supp(z)⊆Λ`+1 ‖y − Φz‖2

x`+1 = hard(x̃, K)
r`+1 = y − Φx`+1

` = `+ 1
end while
output: x̂ = x` = arg minz: supp(z)⊆Λ` ‖y − Φz‖2

iteration the algorithm begins with an x` with at most K nonzeros. It then adds 2K

indices to Λ`.4 At this point, |Λ`| ≤ 3K. Proceeding as in OMP, CoSaMP solves a

least-squares problem to update x`, but rather than updating with the full solution

to the least-squares problem, which will have up to 3K nonzeros, CoSaMP thresholds

this solution and updates with a pruned version so that x` will have only K nonzeros.

4The choice of 2K is primarily driven by the proof technique, and is not intended to be interpreted
as an optimal or necessary choice. For example, in [35] it is shown that the choice of K is sufficient
to establish similar performance guarantees to those for CoSaMP.
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Sparse Signal Acquisition



Chapter 3

Stable Embeddings of Sparse

Signals

One of the core problems in signal processing concerns the acquisition of a discrete,

digital representation of a signal. Mathematically, we can represent an acquisition

system that obtains M linear measurements as an operator Φ : X → RM , where X

represents our signal space. For example, in classical sampling systems we assume

that X is the set of all bandlimited signals, in which case the Nyquist-Shannon sam-

pling theorem dictates that acquiring uniform samples in time at the Nyquist rate is

optimal, in the sense that it exactly preserves the information in the signal, and that

with any fewer samples there would be some signals in our model which we would be

unable to recover.

In CS, we extend our concept of a measurement system to allow general linear

operators Φ, not just sampling systems. As in the classical setting, we wish to design

our measurement system Φ with two competing goals: (i) we want to acquire as

few measurements as possible, i.e., we want M to be small, and (ii) we want to

ensure that we preserve the information in our signal. While there are many possible

ways to mathematically capture the notion of information preservation, a simple yet

33
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powerful approach is to require that Φ be a stable embedding of the signal model.

Specifically, given a distance metric dX (x, y) defined on pairs x, y ∈ X , then Φ is a

stable embedding of X if there exists a constant δ ∈ (0, 1) such that

(1− δ)dX (x, y) ≤ ‖Φx− Φy‖`p ≤ (1 + δ)dX (x, y) (3.1)

for all x, y ∈ X . An operator satisfying (3.1) is also called bi-Lipschitz. This property

ensures that signals that are well-separated in X remain well-separated after the

application of Φ. This implies that Φ is one-to-one, and hence invertible — moreover,

in the case where the measurements are perturbed, this also guarantees a degree of

stability.

In this chapter1 we focus on the special case where X = ΣK ⊂ RN and we

measure distances with the `2 norm, in which case the property in (3.1) is also known

as the restricted isometry property (RIP) or uniform uncertainty principle (UUP). We

examine the role that the RIP plays in the stability of sparse recovery algorithms,

showing that in certain settings it is actually a necessary condition. We then provide

a brief overview of the theoretical implications of the RIP for some of the sparse

recovery algorithms described in Section 2.4. We then close by establishing a pair of

lower bounds on the number of measurements M that any matrix satisfying the RIP

must satisfy.

3.1 The Restricted Isometry Property

In [77], Candès and Tao introduced the following isometry condition on matrices

Φ and established its important role in CS.

1Thanks to Peter G. Binev and Piotr Indyk for many useful discussions and helpful suggestions,
especially regarding Theorem 3.5.
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Definition 3.1. We say that a matrix Φ satisfies the restricted isometry property

(RIP) of order K if there exists a δK ∈ (0, 1) such that

(1− δK)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δK)‖x‖2
2, (3.2)

for all x ∈ ΣK .

While the inequality in (3.2) may appear to be somewhat different from our notion

of a stable embedding in (3.1), they are in fact equivalent. Specifically, if we set

X = ΣK and dX (x, y) = ‖x− y‖2, then Φ is a stable embedding of ΣK if and only if

Φ satisfies the RIP of order 2K (since for any x, y ∈ ΣK , x− y ∈ Σ2K).

Note that if Φ satisfies the RIP of order K with constant δK , then for any K ′ < K

we automatically have that Φ satisfies the RIP of order K ′ with constant δK′ ≤ δK .

Moreover, in [44] it is shown (Corollary 3.4) that if Φ satisfies the RIP of order K

with a sufficiently small constant, then it will also automatically satisfy the RIP of

order cK for certain c, albeit with a somewhat worse constant.

Lemma 3.1 (Needell-Tropp [44]). Suppose that Φ satisfies the RIP of order K with

constant δK. Let c be a positive integer. Then Φ satisfies the RIP of order K ′ = c
⌊
K
2

⌋
with constant δK′ < c δK.

This lemma is trivial for c = 1, 2, but for c ≥ 3 (and K ≥ 4) this allows us

to extend from RIP of order K to higher orders. Note however that δK must be

sufficiently small in order for the resulting bound to be useful. In particular, this

lemma only yields δK′ < 1 when δK < 1/c. Thus, we cannot extend the RIP to

arbitrarily large order. We will make use of this fact below in providing a lower

bound on the number of measurements necessary to obtain a matrix satisfying the

RIP with a particular constant. Note that when K is clear from the context, we will

often omit the dependence of δK on K, and simply use δ to denote the RIP constant.
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3.2 The RIP and Stability

We will see later that if a matrix Φ satisfies the RIP, then this is sufficient for

a variety of algorithms to be able to successfully recover a sparse signal x from the

measurements Φx. First, however, we will take a closer look at whether the RIP

is actually necessary. It is clear that the lower bound in the RIP is a necessary

condition if we wish to be able to recover all sparse signals x from the measurements

Φx. Specifically, if x has at most K nonzero entries, then Φ must satisfy the lower

bound of the RIP of order 2K with δ2K < 1 in order to ensure that any algorithm

can recover x from the measurements y. To see this, observe that if Φ fails to satisfy

the RIP for any δ2K < 1, then there exists a vector h such that h has at most 2K

nonzeros and Φh = 0. Since h has at most 2K nonzeros, we can write h = x + x′,

where both x and x′ have at most K nonzeros. This yields Φx = Φx′, hence no

method can ever hope to successfully recover all K-sparse signals.

Moreover, we can say even more about the necessity of the RIP by considering

the following notion of stability.

Definition 3.2. Let Φ : RN → RM denote a measurement matrix and ∆ : RM → RN

denote a recovery algorithm. We say that the pair (Φ,∆) is C-stable if for any x ∈ ΣK

and any e ∈ RM we have that

‖∆ (Φx+ e)− x‖2 ≤ C‖e‖2.

This definition simply says that if we add a small amount of noise to the measure-

ments, the impact of this on the recovered signal should not be arbitrarily large. The

theorem below demonstrates that the existence of any decoding algorithm (however

impractical) that can stably recover from noisy measurements necessitates that Φ

satisfy the lower bound of (3.2) with a constant determined by C.
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Theorem 3.1. If the pair (Φ,∆) is C-stable, then

1

C
‖x‖2 ≤ ‖Φx‖2 (3.3)

for all x ∈ Σ2K.

Proof. Pick any x, y ∈ ΣK . Define

ex =
Φ(y − x)

2
and ey =

Φ(x− y)

2
,

and note that

Φx+ ex = Φy + ey =
Φ(x+ y)

2
.

Let x̂ = ∆(Φx + ex) = ∆(Φy + ey). From the triangle inequality and the definition

of C-stability, we have that

‖x− y‖2 = ‖x− x̂+ x̂− y‖2

≤ ‖x− x̂‖2 + ‖x̂− y‖2

≤ C‖ex‖2 + C‖ey‖2 = 2C

∥∥∥∥Φ(x− y)

2

∥∥∥∥
2

= C‖Φx− Φy‖2.

Since this holds for any x, y ∈ ΣK , the result follows.

Note that as C → 1, we have that Φ must satisfy the lower bound of (3.2) with

δK = 1− 1/C2 → 0. Thus, if we desire to reduce the impact of noise in our recovered

signal we must adjust Φ so that it satisfies the lower bound of (3.2) with a tighter

constant.

One might respond to this result by arguing that since the upper bound is not

necessary, we can avoid redesigning Φ simply by rescaling Φ so that as long as Φ

satisfies the RIP with δ2K < 1, the rescaled version AΦ will satisfy (3.3) for any
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constant C. In settings where the size of the noise is independent of our choice of

Φ, this is a valid point — by scaling Φ we are essentially adjusting the gain on the

“signal” part of our measurements, and if increasing this gain does not impact the

noise, then we can achieve arbitrarily high signal-to-noise ratios, so that eventually

the noise is negligible compared to the signal. However, in most practical settings the

noise is not independent of Φ. For example, consider the case where the noise vector

e represents quantization noise produced by a finite dynamic range quantizer with B

bits. Suppose the measurements lie in the interval [−T, T ], and we have adjusted the

quantizer to capture this range. If we rescale Φ by A, then the measurements now

lie between [−AT,AT ] and we must scale the dynamic range of our quantizer by A.

In this case the resulting quantization error is simply Ae, and we have achieved no

reduction in the reconstruction error.

3.3 Consequences of the RIP

3.3.1 `1-norm minimization

We have argued that the RIP is in a certain sense a necessary condition for sta-

bility. In fact, we can show that for many of the sparse recovery algorithms described

in Section 2.4, the RIP also provides a sufficient condition to guarantee robustness to

both noise and to compressible signals. While there have been numerous variations in

the analysis of `1 minimization applied to the problem of sparse recovery — in partic-

ular the BPDN formulation in (2.10) — we will choose a single result representative

of the literature. See [78] for a short proof of this theorem.
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Theorem 3.2 (Candès [78]). Suppose that Φ satisfies the RIP of order 2K with

isometry constant δ2K <
√

2− 1. Given measurements of the form y = Φx+ e, where

‖e‖2 ≤ ε, the solution to (2.10) obeys

‖x̂− x‖2 ≤ C0ε+ C1
σK(x)1√

K
, (3.4)

where σK(x)1 is defined as in (2.3) and where

C0 = 4

√
1 + δ2K

1− (1 +
√

2)δ2K

, C1 = 2
1− (1−

√
2)δ2K

1− (1 +
√

2)δ2K

.

Some comments are in order. First, note that the reconstruction error is bounded

by two terms. The first term is determined by the bound on the measurement noise

e. This tells us that if we add a small amount of noise to the measurements, its

impact on the recovered signal remains well-controlled. Moreover, as the noise bound

approaches zero, we see that the impact of the noise on the reconstruction error will

also approach zero. The second term measures the error incurred by approximating

the signal x as a K-sparse signal (where the error is measured using the `1 norm). In

the event that x is compressible, then the error again remains well-controlled. Note

that this term vanishes if x is perfectly K-sparse.2 Moreover, in the event that x is

K-sparse and there is no noise, then we obtain an exact recovery.

There have been many efforts to improve on the constants in Theorem 3.2 and to

weaken the assumption on the constant δ, but most of this work results in theorems

that are substantially the same. One notable exception is the work of Wojtaszczyk,

which demonstrates that a slight modification of (2.10) actually obeys a similar result

but where the impact of the noise on recovery is actually ‖e‖2 rather than the bound

ε [79]. In other words, (2.10) can be made robust to parameter mismatch in ε,

2In the event that x is sparse when represented in a basis Ψ, then we must modify (2.10) appro-
priately and measure the reconstruction error as ‖α̂ − α‖2, where x = Ψα. In this case the bound
becomes C0ε+ C1σK(α)1/

√
K.
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whereas Theorem 3.2 tells us nothing about what happens if ‖e‖2 > ε or if ‖e‖2 � ε.

It remains an open question whether (2.10) itself satisfies this property.

3.3.2 Greedy algorithms

What is perhaps even more surprising is that the RIP is also sufficient for many of

the greedy algorithms described in Sections 2.4.2 and 2.4.3 to satisfy results similar

to Theorem 3.2. We will have much more to say about the cases of OMP and ROMP

in Chapter 6, but as a representative example we provide a modified statement of

Theorem 2.2 of [44] on the performance of CoSaMP.

Theorem 3.3 (Needell-Tropp [44]). Suppose that Φ satisfies the RIP of order 4K

with isometry constant δ4K < 0.1. Given measurements of the form y = Φx+ e, then

after O(K) iterations, CoSaMP produces an estimate x̂ satisfying

‖x̂− x‖2 ≤ C0‖e‖2 + C1
σK(x)1√

K
, (3.5)

for some constants C0, C1 depending only on δ4K and the number of iterations per-

formed.

Note that IHT satisfies a similar result, as well as the SP and DThresh algorithms.

Of course, while all of these algorithms have similar performance guarantees, the

constants vary widely, and practical performance depends as much on the details of

the implementation and usage of the appropriate a “tricks of the trade” as anything

else. In general, there is no clear winner among these algorithms at present.

3.4 Measurement Bounds

Finally, we consider how many measurements are necessary to achieve the RIP.

We first focus on the constant δ.
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Theorem 3.4. Let Φ be an M × N matrix that satisfies the RIP of order K with

constant δK ∈ (0, 1). Then

M ≥ 1

2

(
K − 1

δK
−K

)
. (3.6)

Proof. We begin with the observation that if K ′ ≥M + 1, then δK′ ≥ 1. This follows

from the fact that if K ′ ≥ M + 1, then any M × K ′ submatrix of Φ will have a

nontrivial null space, and hence the lower bound of (3.2) must be zero. Thus, from

Lemma 3.1, we have that if K ′ = c
⌊
K
2

⌋
≥ M + 1 for some integer c, then 1 < c δK .

Hence, for any integer c satisfying

c ≥ M + 1⌊
K
2

⌋
we have that

c >
1

δK
.

This implies that

1

δK
<

⌈
M + 1⌊

K
2

⌋ ⌉

≤

⌈
M + 1
K
2
− 1

2

⌉
=

⌈
2M + 2

K − 1

⌉
≤ 2M + 2

K − 1
+

(
1− 1

K − 1

)
=

2M +K

K − 1
.

This reduces to yield the desired result.

This bound tells us that if we fix the desired RIP order K, as we decrease the

RIP constant δK , the required number of measurements increases at a rate that is at

least proportional to 1/δK .

If we now ignore the impact of δ and focus only on the dimensions of the problem
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(N , M , and K) we can establish another lower bound. We first provide a preliminary

lemma that we will need in the proof of the main theorem. The lemma is a direct

consequence of Lemma 3.1 of [80], which is a well-known “folk theorem” from coding

theory.

Lemma 3.2. Let K and N satisfying K < N be given. For any ε ∈ (0, 1 −K/N),

there exists a set X consisting of length-N binary vectors, each with exactly K ones,

such that for any x, y ∈ X,

√
2Kε ≤ ‖x− y‖2 ≤

√
2K, (3.7)

and

log |X| >
(

1−HN
K

(ε)
)
K log

(
N

K

)
, (3.8)

where Hq is the q-ary entropy function

Hq(ε) = −ε logq

(
ε

q − 1

)
− (1− ε) logq (1− ε) .

Using this lemma, we can establish the following lower bound.

Theorem 3.5. Let Φ be an M ×N matrix that satisfies the RIP of order K ≤ N/2

with constant δ ∈ (0, 1). Then

M ≥ CδK log

(
N

K

)
, (3.9)

where Cδ < 1 is a constant depending only on δ.

Proof. Since Φ satisfies (3.2), we also have that

√
1− δ‖x− y‖2 ≤ ‖Φx− Φy‖2 ≤

√
1 + δ‖x− y‖2 (3.10)

for all x, y ∈ ΣK , since x− y ∈ Σ2K . Now consider the set of points X in Lemma 3.2



43

for some ε < 1/2. By construction, we have that

√
2Kε ≤ ‖x− y‖2 ≤

√
2K, (3.11)

and since X ⊂ ΣK , we can combine (3.10) and (3.11) to obtain

√
2Kε(1− δ) ≤ ‖Φx− Φy‖2 ≤

√
2K(1 + δ)

for all x, y ∈ X. From the lower bound we can say that for any pair of points

x, y ∈ X, if we center balls of radius
√

2Kε(1− δ)/2 =
√
Kε(1− δ)/2 at Φx and

Φy, then these balls will be disjoint. In turn, the upper bound tells us that the

maximum difference between the centers of any pair of balls is
√

2K(1 + δ), which

means that the entire set of balls is itself contained within a larger ball of radius√
2K(1 + δ) +

√
Kε(1− δ)/2. This implies that

Vol

(
BM

(√
2K(1 + δ) +

√
Kε(1− δ)

2

))
≥ |X| · Vol

(
BM

(√
Kε(1− δ)

2

))
,

where Vol
(
BM(r)

)
denotes the volume of a ball of radius r in RM . This can be

expressed equivalently as

(√
2K(1 + δ) +

√
Kε(1− δ)

2

)M

≥ |X| ·

(√
Kε(1− δ)

2

)M

,

or equivalently, (√
2(1 + δ)

ε(1− δ)
+ 1

)M

≥ |X|.

This reduces to

M ≥ log |X|

log
(

2
√

2(1+δ)
ε(1−δ) + 1

) .



44

Applying the bound for |X| from (3.2) of Lemma 3.2 and setting ε = 1/4, we obtain

M ≥
1−HN

K

(
1
4

)
log
(√

1+δ
1−δ + 1

)K log

(
N

K

)
.

Observing that Hq is monotonically decreasing as a function of q, we can replace HN
K

with H2, which establishes the theorem with

Cδ ≈
0.18

log
(√

1+δ
1−δ + 1

) .

Note that there is nothing special about the requirement that K ≤ N/2; this

choice was made only to simplify the argument. We have made no effort to optimize

the constants, but it is worth noting that they are already quite reasonable. For

example, for the case of δ = 1/4 we have Cδ ≈ 0.5.

We also note that Theorem 3.5 agrees with the lower bounds that are implied

by the work of Garnaev, Gluskin, and Kashin on n-widths [81, 82]. Specifically, in

the 1970’s they calculated bounds for the various n-widths for certain `p balls in

RN , and it is possible to relate these widths to the best possible performance of

sparse recovery algorithms. Essentially, the fact that the RIP is sufficient for sparse

recovery algorithms to achieve a certain level of performance means that if one were

able to obtain a matrix satisfying the RIP with fewer measurements than in (3.9),

then this would contradict the existing results on n-widths, and thus we cannot do

better than (3.9). See [83–85] for further details. In comparison to these previous

results, Theorem 3.5 has an appealing simplicity.



Chapter 4

Random Measurements

We now turn to the problem of generating matrices Φ that satisfy the RIP. While

our first instinct might be to develop an explicit procedure for designing such a matrix,

we will consider a radically different approach — we will instead pick our matrix Φ at

random. We will construct our random matrices as follows: given M and N , generate

random matrices Φ by choosing the entries φij as independent realizations from a

random distribution. In this chapter,1 we show that under suitable conditions on this

distribution, the required number of measurements is within a constant factor of the

lower bound established in Theorem 3.5. Perhaps surprisingly, to date there exist no

deterministic constructions of Φ which attain this bound. Moreover, we also show

that these same techniques can be applied to show that random matrices produce

stable embeddings of other signal models beyond sparsity.

4.1 Sub-Gaussian Random Variables

A number of distributions, notably Gaussian and Bernoulli, are known to satisfy

certain concentration of measure inequalities. We further analyze this phenomenon in

1Section 4.3 consists of work that was done in collaboration with Richard G. Baraniuk, Ronald
A. DeVore, and Michael B. Wakin.
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Section 4.2 by considering the more general class of sub-Gaussian distributions [86].

Definition 4.1. A random variable X is called sub-Gaussian if there exists a constant

c > 0 such that

E (exp(Xt)) ≤ exp(c2t2/2) (4.1)

holds for all t ∈ R. We use the notation X ∼ Sub(c2) to denote that X satisfies (4.1).

The function E (exp(Xt)) is the moment-generating function of X, while the up-

per bound in (4.1) is the moment-generating function of a Gaussian random vari-

able. Thus, a sub-Gaussian distribution is one whose moment-generating function is

bounded by that of a Gaussian. There are a tremendous number of sub-Gaussian

distributions, but there are two particularly important examples:

� If X ∼ N (0, σ2), i.e., X is a zero-mean Gaussian random variable with variance

σ2, then X ∼ Sub(σ2). Indeed, as mentioned above, the moment-generating

function of a Gaussian is given by E (exp(Xt)) = exp(σ2t2/2), and thus (4.1) is

trivially satisfied.

� If X is a zero-mean, bounded random variable, i.e., one for which there exists

a constant B such that |X| ≤ B with probability 1, then X ∼ Sub(B2).

A common way to characterize sub-Gaussian random variables is through an-

alyzing their moments. We consider only the mean and variance in the following

elementary lemma, proven in [86].

Lemma 4.1 (Buldygin-Kozachenko [86]). If X ∼ Sub(c2) then,

E(X) = 0 (4.2)

and

E(X2) ≤ c2. (4.3)
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Lemma 4.1 shows that if X ∼ Sub(c2) then E(X2) ≤ c2. In some cases it will be

useful to consider a more restrictive class of random variables for which this inequality

becomes an equality.

Definition 4.2. A random variable X is called strictly sub-Gaussian if X ∼ Sub(σ2)

where σ2 = E(X2), i.e., the inequality

E (exp(Xt)) ≤ exp(σ2t2/2) (4.4)

holds for all t ∈ R. To denote that X is strictly sub-Gaussian with variance σ2, we

will use the notation X ∼ SSub(σ2).

Examples of strictly sub-Gaussian distributions include:

� If X ∼ N (0, σ2), then X ∼ SSub(σ2).

� If X ∼ U(−1, 1), i.e., X is uniformly distributed on the interval [−1, 1], then

X ∼ SSub(1/3).

� Now consider the random variable with distribution such that

P(X = 1) = P(X = −1) =
1− s

2
, P(X = 0) = s, s ∈ [0, 1).

For any s ∈ [0, 2/3], X ∼ SSub(1 − s). For s ∈ (2/3, 1), X is not strictly

sub-Gaussian.

We now provide an equivalent characterization for sub-Gaussian and strictly sub-

Gaussian random variables, proven in [86], that illustrates their concentration of

measure behavior.
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Theorem 4.1 (Buldygin-Kozachenko [86]). A random variable X ∼ Sub(c2) if and

only if there exists a t0 ≥ 0 and a constant a ≥ 0 such that

P(|X| ≥ t) ≤ 2 exp

(
− t2

2a2

)
(4.5)

for all t ≥ t0. Moreover, if X ∼ SSub(σ2), then (4.5) holds for all t > 0 with a = σ.

Finally, sub-Gaussian distributions also satisfy one of the fundamental properties

of a Gaussian distribution: the sum of two sub-Gaussian random variables is itself

a sub-Gaussian random variable. This result is established in more generality in the

following lemma.

Lemma 4.2. Suppose that X = [X1, X2, . . . , XN ], where each Xi is independent and

identically distributed (i.i.d.) with Xi ∼ Sub(c2). Then for any α ∈ RN , 〈X,α〉 ∼

Sub (c2‖α‖2
2). Similarly, if each Xi ∼ SSub(σ2), then for any α ∈ RN , 〈X,α〉 ∼

SSub (σ2‖α‖2
2).

Proof. Since the Xi are i.i.d., the joint distribution factors and simplifies as:

E

(
exp

(
t
N∑
i=1

αiXi

))
= E

(
N∏
i=1

exp (tαiXi)

)

=
N∏
i=1

E (exp (tαiXi))

≤
N∏
i=1

exp
(
c2(αit)

2/2
)

= exp

((
N∑
i=1

α2
i

)
c2t2/2

)
.

In the case where the Xi are strictly sub-Gaussian, the result follows by setting c2 = σ2

and observing that E (〈X,α〉2) = σ2‖α‖2
2.
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4.2 Sub-Gaussian Matrices and Concentration of

Measure

Sub-Gaussian distributions have a close relationship to the concentration of mea-

sure phenomenon [87]. To illustrate this, we note that Lemma 4.2 allows us to apply

Theorem 4.1 to obtain deviation bounds for weighted sums of sub-Gaussian random

variables. For our purposes, however, it will be more interesting to study the norm

of a vector of sub-Gaussian random variables. In particular, if X is a vector where

each Xi is i.i.d. with Xi ∼ Sub(c), we would like to know how ‖X‖2 deviates from its

mean.

In order to establish the result, we will make use of Markov’s inequality for non-

negative random variables.

Lemma 4.3 (Markov). For any nonnegative random variable X and t > 0,

P(X ≥ t) ≤ E(X)

t
.

Proof. Let f(x) denote the probability density function for X.

E(X) =

∫ ∞
0

xf(x) dx ≥
∫ ∞
t

xf(x) dx ≥
∫ ∞
t

tf(x) dx = tP(X ≥ t).

In addition, we will require the following bound on the exponential moment of a

sub-Gaussian random variable.

Lemma 4.4. Suppose X ∼ Sub(c2). Then

E
(
exp(λX2/2c2)

)
≤ 1√

1− λ
, (4.6)

for any λ ∈ [0, 1).
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Proof. First, observe that in the case where λ = 0, the lemma holds trivially. Thus,

suppose that λ ∈ (0, 1). Let f(x) denote the probability density function for X. Since

X is sub-Gaussian, we have by definition that

∫ ∞
−∞

exp(tx)f(x) dx ≤ exp(c2t2/2)

for any t ∈ R. If we multiply by exp(−c2t2/2λ), we obtain

∫ ∞
−∞

exp(tx− c2t2/2λ)f(x) dx ≤ exp(c2t2(λ− 1)/2λ).

Now, integrating both sides with respect to t, we obtain

∫ ∞
−∞

(∫ ∞
−∞

exp(tx− c2t2/2λ) dt

)
f(x) dx ≤

∫ ∞
−∞

exp(c2t2(λ− 1)/2λ) dt,

which reduces to

1

c

√
2πλ

∫ ∞
−∞

exp(λx2/2c2)f(x) dx ≤ 1

c

√
2πλ

1− λ
.

This simplifies to prove the lemma.

We now state our main theorem, which generalizes the results of [88] and uses

substantially the same proof technique.

Theorem 4.2. Suppose that X = [X1, X2, . . . , XM ], where each Xi is i.i.d. with

Xi ∼ Sub(c2) and E(X2
i ) = σ2. Then

E
(
‖X‖2

2

)
= Mσ2. (4.7)

Moreover, for any α ∈ (0, 1) and for any β ∈ [c2/σ2, βmax], there exists a constant
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C∗ ≥ 4 depending only on βmax and the ratio σ2/c2 such that

P
(
‖X‖2

2 ≤ αMσ2
)
≤ exp

(
−M(1− α)2/C∗

)
(4.8)

and

P
(
‖X‖2

2 ≥ βMσ2
)
≤ exp

(
−M(β − 1)2/C∗

)
. (4.9)

Proof. Since the Xi are independent, we obtain

E
(
‖X‖2

2

)
=

M∑
i=1

E
(
X2
i

)
=

M∑
i=1

σ2 = Mσ2

and hence (4.7) holds. We now turn to (4.8) and (4.9). Let us first consider (4.9).

We begin by applying Markov’s inequality:

P
(
‖X‖2

2 ≥ βMσ2
)

= P
(
exp(λ‖X‖2

2) ≥ exp
(
λβMσ2

))
≤ E (exp(λ‖X‖2

2))

exp (λβMσ2)

=

∏M
i=1 E (exp(λX2

i ))

exp (λβMσ2)
.

Since Xi ∼ Sub(c2), we have from Lemma 4.4 that

E
(
exp(λX2

i )
)

= E
(
exp(2c2λX2

i /2c
2)
)
≤ 1√

1− 2c2λ
.

Thus,
M∏
i=1

E
(
exp

(
λX2

i

))
≤
(

1

1− 2c2λ

)M/2

and hence

P
(
‖X‖2

2 ≥ βMσ2
)
≤
(

exp (−2λβσ2)

1− 2c2λ

)M/2

.

By setting the derivative to zero and solving for λ, one can show that the optimal λ
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is

λ =
βσ2 − c2

2c2σ2(1 + β)
.

Plugging this in we obtain

P
(
‖X‖2

2 ≥ βMσ2
)
≤
(
β
σ2

c2
exp

(
1− βσ

2

c2

))M/2

. (4.10)

Similarly,

P
(
‖X‖2

2 ≤ αMσ2
)
≤
(
α
σ2

c2
exp

(
1− ασ

2

c2

))M/2

. (4.11)

In order to combine and simplify these inequalities, we will make use of the fact that

if we define

C∗ = max

(
4, 2

(βmaxσ
2/c− 1)2

(βmaxσ2/c− 1)− log(βmaxσ2/c)

)
then we have that for any γ ∈ [0, βmaxσ

2/c] we have the bound

log(γ) ≤ (γ − 1)− 2(γ − 1)2

C∗
, (4.12)

and hence

γ ≤ exp

(
(γ − 1)− 2(γ − 1)2

C∗

)
.

By setting γ = ασ2/c2, (4.11) reduces to yield (4.8). Similarly, setting γ = βσ2/c2

establishes (4.9).

This result tells us that given a vector with entries drawn according to a sub-

Gaussian distribution, we can expect the norm of the vector to concentrate around

its expected value of Mσ2 with exponentially high probability as M grows. Note, how-

ever, that the range of allowable choices for β in (4.9) is limited to β ≥ c2/σ2 ≥ 1.

Thus, for a general sub-Gaussian distribution, we may be unable to achieve an ar-

bitrarily tight concentration. However, recall that for strictly sub-Gaussian distri-

butions we have that c2 = σ2, in which there is no such restriction. Moreover, for
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strictly sub-Gaussian distributions we also have the following useful corollary.2

Corollary 4.1. Suppose that X = [X1, X2, . . . , XM ], where each Xi is i.i.d. with

Xi ∼ SSub(σ2). Then

E
(
‖X‖2

2

)
= Mσ2 (4.13)

and for any ε > 0,

P
(∣∣‖X‖2

2 −Mσ2
∣∣ ≥ εMσ2

)
≤ 2 exp

(
−Mε2

C∗

)
(4.14)

with C∗ = 2/(1− log(2)) ≈ 6.52.

Proof. Since each Xi ∼ SSub(σ2), we have that Xi ∼ Sub(σ2) and E(X2
i ) = σ2, in

which case we may apply Theorem 4.2 with α = 1− ε and β = 1 + ε. This allows us

to simplify and combine the bounds in (4.8) and (4.9) to obtain (4.14). The value of

C∗ follows from the fact that in this case we have that 1 + ε ≤ 2 so that we can set

βmax = 2.

Finally, from Corollary 4.1 we also have the following additional corollary that we

will use in Section 4.3. This result generalizes the main results of [89] to the broader

family of general strictly sub-Gaussian distributions via a much simpler proof. Note

that the conclusion of this corollary is also essentially the same as Lemma 6.1 of [90].

Corollary 4.2. Suppose that Φ is an M ×N matrix whose entries φij are i.i.d. with

φij ∼ SSub(1/M). Let Y = Φx for x ∈ RN . Then for any ε > 0, and any x ∈ RN ,

E
(
‖Y ‖2

2

)
= ‖x‖2

2 (4.15)

2Corollary 4.1 exploits the strictness in the strictly sub-Gaussian distribution twice — first to
ensure that β ∈ (1, 2] is an admissible range for β and then to simplify the computation of C∗. One
could easily establish a different version of this corollary for non-strictly sub-Gaussian vectors but
for which we consider a more restricted range of ε provided that c2/σ2 < 2. However, since most
of the distributions of interest in this thesis are indeed strictly sub-Gaussian, we do not pursue this
route. Note also that if one is interested only in the case where ε is very small, there is considerable
room for improvement in the constant C∗.
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and

P
(∣∣‖Y ‖2

2 − ‖x‖2
2

∣∣ ≥ ε‖x‖2
2

)
≤ 2 exp

(
−Mε2

C∗

)
(4.16)

with C∗ = 2/(1− log(2)) ≈ 6.52.

Proof. Let φi denote the ith row of Φ. Observe that if Yi denotes the first element

of Y , then Yi = 〈φi, x〉, and thus by Lemma 4.2, Yi ∼ SSub (‖x‖2
2/M). Applying

Corollary 4.1 to the M -dimensional random vector Y , we obtain (4.16).

4.3 Sub-Gaussian Matrices and the RIP

We now show how to exploit the concentration of measure properties of sub-

Gaussian distributions to provide a simple proof that sub-Gaussian matrices satisfy

the RIP. We begin by observing that if all we require is that δ2K > 0, then we may set

M = 2K and draw a Φ according to a Gaussian distribution, or indeed any continuous

univariate distribution. In this case, with probability 1, any subset of 2K columns

will be linearly independent, and hence all subsets of 2K columns will be bounded

below by 1 − δ2K where δ2K > 0. However, suppose we wish to know the constant

δ2K . In order to find the value of the constant we must consider all possible
(
N
K

)
K-

dimensional subspaces of RN . From a computational perspective, this is impossible

for any realistic values of N and K. Moreover, in light of Theorems 3.4 and 3.5, the

actual value of δ2K in this case is likely to be very close to 1. Thus, we focus instead

on the problem of achieving the RIP of order 2K for a specified constant δ2K .

To ensure that the matrix will satisfy the RIP, we will impose two conditions on

the random distribution. First, we require that the distribution is sub-Gaussian. In

order to simplify our argument, we will use the simpler results stated in Corollaries 4.1

and 4.2, so our theorem will actually assume that the distribution is strictly sub-

Gaussian, although the argument could also be modified to establish a similar result

for general sub-Gaussian distributions using Theorem 4.2.
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Our second condition is that we require that the distribution yield a matrix that

is approximately norm-preserving, which will require that

E(φ2
ij) =

1

M
, (4.17)

and hence the variance is 1/M .

We shall now show how the concentration of measure inequality in Corollary 4.2

can be used together with covering arguments to prove the RIP for sub-Gaussian

random matrices. Our general approach will be to construct nets of points in each

K-dimensional subspace, apply (4.16) to all of these points through a union bound,

and then extend the result from our finite set of points to all possible K-dimensional

signals. Thus, in order to prove the result, we will require the following upper bound

on the number of points required to construct the nets of points. (For an overview of

results similar to Lemma 4.5 and of various related concentration of measure results,

we refer the reader to the excellent introduction of [91].)

Lemma 4.5. Let ε ∈ (0, 1) be given. There exists a set of points Q such that |Q| ≤

(3/ε)K and for any x ∈ RK with ‖x‖2 ≤ 1 there is a point q ∈ Q satisfying ‖x−q‖2 ≤

ε.

Proof. We construct Q in a greedy fashion. We first select an arbitrary point q1 ∈ RK

with ‖q1‖2 ≤ 1. We then continue adding points to Q so that at step i we add a point

qi ∈ RK with ‖qi‖2 ≤ 1 which satisfies ‖qi − qj‖2 > ε for all j < i. This continues

until we can add no more points (and hence for any x ∈ RK with ‖x‖2 ≤ 1 there is

a point q ∈ Q satisfying ‖x − q‖2 ≤ ε.) Now we wish to bound |Q|. Observe that if

we center balls of radius ε/2 at each point in Q, then these balls are disjoint and lie

within a ball of radius 1 + ε/2. Thus, if BK(r) denotes a ball of radius r in RK , then

|Q| · Vol
(
BK(ε/2)

)
≤ Vol

(
BK(1 + ε/2)

)
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and hence

|Q| ≤
Vol
(
BK(1 + ε/2)

)
Vol (BK(ε/2))

=
(1 + ε/2)K

(ε/2)K

≤ (3/ε)K .

We now turn to our main theorem.

Theorem 4.3. Fix δ ∈ (0, 1). Let Φ be an M ×N random matrix whose entries φij

are i.i.d. with φij ∼ SSub(1/M). If

M ≥ C1K log

(
N

K

)
, (4.18)

then Φ satisfies the RIP of order K with the prescribed δ with probability exceeding

1− 2e−C2M , where C1 is arbitrary and C2 = δ2/2C∗ − log(42e/δ)/C1.

Proof. First note that it is enough to prove (3.2) in the case ‖x‖2 = 1, since Φ is

linear. Next, fix an index set T ⊂ {1, 2, . . . , N} with |T | = K, and let XT denote

the K-dimensional subspace spanned by the columns of ΦT . We choose a finite set

of points QT such that QT ⊆ XT , ‖q‖2 ≤ 1 for all q ∈ QT , and for all x ∈ XT with

‖x‖2 ≤ 1 we have

min
q∈QT

‖x− q‖2 ≤ δ/14. (4.19)

From Lemma 4.5, we can choose such a set QT with |QT | ≤ (42/δ)K . We then repeat

this process for each possible index set T , and collect all the sets QT together:

Q =
⋃

T :|T |=K

QT . (4.20)
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There are
(
N
K

)
possible index sets T . We can bound this number by

(
N

K

)
=
N(N − 1)(N − 2) · · · (N −K + 1)

K!
≤ NK

K!
≤
(
eN

K

)K
,

where the last inequality follows since from Sterling’s approximation we have K! ≥

(K/e)K . Hence |Q| ≤ (42eN/δK)K . Since the entries of Φ are drawn according to

a strictly sub-Gaussian distribution, from Corollary 4.2 we have (4.16). We next use

the union bound to apply (4.16) to this set of points with ε = δ/
√

2, with the result

that, with probability exceeding

1− 2(42eN/δK)K e−Mδ2/2C∗ , (4.21)

we have

(1− δ/
√

2)‖q‖2
2 ≤ ‖Φq‖2

2 ≤ (1 + δ/
√

2)‖q‖2
2, for all q ∈ Q. (4.22)

We observe that if M satisfies (4.18) then

log

(
42eN

δK

)K
≤ K log

(
N

K

)
log

(
42e

δ

)
≤ M log(42e/δ)

C1

and thus (4.21) exceeds 1− 2e−C2M as desired.

We now define A as the smallest number such that

‖Φx‖2 ≤
√

1 + A‖x‖2, for all x ∈ ΣK , ‖x‖2 ≤ 1. (4.23)

Our goal is to show that A ≤ δ. For this, we recall that for any x ∈ ΣK with ‖x‖2 ≤ 1,

we can pick a q ∈ Q such that ‖x − q‖2 ≤ δ/14 and such that x − q ∈ ΣK (since if
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x ∈ XT , we can pick q ∈ QT ⊂ XT satisfying ‖x− q‖2 ≤ δ/14). In this case we have

‖Φx‖2 ≤ ‖Φq‖2 + ‖Φ(x− q)‖2 ≤
√

1 + δ/
√

2 +
√

1 + A · δ/14. (4.24)

Since by definition A is the smallest number for which (4.23) holds, we obtain
√

1 + A ≤
√

1 + δ/
√

2 +
√

1 + A · δ/14. Therefore

√
1 + A ≤

√
1 + δ/

√
2

1− δ/14
≤
√

1 + δ,

as desired. We have proved the upper inequality in (3.2). The lower inequality follows

from this since

‖Φx‖2 ≥ ‖Φq‖2 − ‖Φ(x− q)‖2 ≥
√

1− δ/
√

2−
√

1 + δ · δ/14 ≥
√

1− δ, (4.25)

which completes the proof.

Above we prove above that the RIP holds with high probability when the matrix

Φ is drawn according to a strictly sub-Gaussian distribution. However, we are often

interested in signals that are sparse or compressible in some orthonormal basis Ψ 6= I,

in which case we would like the matrix ΦΨ to satisfy the RIP. In this setting it is easy

to see that by choosing our net of points in the K-dimensional subspaces spanned by

sets of K columns of Ψ, Theorem 4.3 will establish the RIP for ΦΨ for Φ again drawn

from a sub-Gaussian distribution. This universality of Φ with respect to the sparsity-

inducing basis is an attractive property that was initially observed for the Gaussian

distribution (based on symmetry arguments), but we can now see is a property of more

general sub-Gaussian distributions. Indeed, it follows that with high probability such

a Φ will simultaneously satisfy the RIP with respect to an exponential number of

fixed bases.
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4.4 Beyond Sparsity

We now briefly discuss the more general question of how to construct linear map-

pings Φ that provide stable embeddings for a few important sets besides ΣK . Specif-

ically, we will examine when we can find Φ satisfying

(1− δ)‖x− y‖2
2 ≤ ‖Φx− Φy‖2

2 ≤ (1 + δ)‖x− y‖2
2 (4.26)

for all x ∈ X and y ∈ Y for sets X ,Y other than X = Y = ΣK .3 To make the depen-

dence of (4.26) on δ clear, we will also sometimes use the term δ-stable embedding.

We start with the simple case where we desire a stable embedding of X = U and

Y = V where U = {ui}|U|i=1 and V = {vi}|V|i=1 are finite sets of points in RN . Note

that in the case where U = V , this result is equivalent to the well-known Johnson-

Lindenstrauss (JL) lemma [88, 89, 92].

Lemma 4.6. Let U be a set of points in RN . Fix δ ∈ (0, 1). Let Φ be an M × N

random matrix whose entries φij are i.i.d. with φij ∼ SSub(1/M). If

M ≥ C1 log(|U||V|), (4.27)

then Φ is a δ-stable embedding of (U ,V) for the prescribed δ with probability exceeding

1− 2e−C2M , where C1 is arbitrary and C2 = δ2/C∗ − 1/C1.

Proof. To prove the result we apply (4.16) from Corollary 4.2 to the |U| · |V| vectors

corresponding to all possible ui−vj. By applying the union bound, we obtain that the

3Note that we are slightly refining our notion of a stable embedding compared to (3.1) by consid-
ering the case where x and y come from different sets. This formulation has some advantages that
will become apparent in later chapters. For now, it simplifies some of our discussion in this section,
since in some cases we will be interested in simply preserving the norms of individual elements in our
set rather than distances between pairs of elements in our set. Specifically, we will consider stable
embeddings of general sets X with Y = {0}. Note that in general, if Φ is a stable embedding of

(X ,Y), this is equivalent to it being a stable embedding of (X̃ , {0}) where X̃ = {x−y : x ∈ X , y ∈ Y}.
This formulation can sometimes be more convenient.
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probability of (4.26) not holding is bounded above by 2|U| · |V|e−Mδ2/C∗ . By bounding

|U| · |V| = elog(|U|·|V|) ≤ eM/C1

we obtain the desired result.

We next note that the technique we used in the proof of Theorem 4.3 provides us

with two immediate corollaries. Briefly, recall that the proof of Theorem 4.3 essen-

tially consisted of constructing an ε-net of points with ε sufficiently small, applying

(4.16) to argue that the structure of the ε-net was preserved by Φ, and then extending

this result to all of ΣK . We constructed the ε-net by picking (3/ε)K points from each

subspace, and then repeating this for all
(
N
K

)
subspaces. If instead we consider only a

single subspace, or some subset of subspaces, the same technique yields the following

corollaries, which we state without proof.

Corollary 4.3. Suppose that X is a K-dimensional subspace of RN . Fix δ ∈ (0, 1).

Let Φ be an M×N random matrix whose entries φij are i.i.d. with φij ∼ SSub(1/M).

If

M ≥ C1K, (4.28)

then Φ is a δ-stable embedding of (X , {0}) (or equivalently, (X ,X )) for the prescribed

δ with probability exceeding 1 − 2e−C2M , where C1 is arbitrary and C2 = δ2/2C∗ −

log(42/δ)/C1.

Corollary 4.4. Suppose that X = ∪Li=1Xi is a union of L different K-dimensional

subspaces of RN . Fix δ ∈ (0, 1). Let Φ be an M × N random matrix whose entries

φij are i.i.d. with φij ∼ SSub(1/M). If

M ≥ C1K log(L), (4.29)

then Φ is a δ-stable embedding of (X , {0}) for the prescribed δ with probability exceed-
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ing 1− 2e−C2M , where C1 is arbitrary and C2 = δ2/2C∗ − log(42/δ)/C1.

Note that if X is a union of L subspaces of dimension K, then the set of all

difference vectors between pairs of points in X is itself a union of
(
L
2

)
< L2 subspaces

of dimension 2K, so that Corollary 4.4 also immediately provides an argument for a

stable embedding of (X ,X ) with only a slight change in C2. See the work of [93, 94]

for examples of signal models that consist of a union of subspaces where L�
(
N
K

)
, in

which case Corollary 4.4 can offer significant improvement in terms of the required

number of measurements compared to standard RIP-based analysis.

Finally, we note that a similar technique has recently been used to demonstrate

that random projections also provide a stable embedding of nonlinear manifolds [95]:

under certain assumptions on the curvature and volume of a K-dimensional manifold

M⊂ RN , a random sensing matrix with M = O (K log(N)) will with high probability

provide a stable embedding of (M,M). Under slightly different assumptions on

M, a number of similar embedding results involving random projections have been

established [96–98].

4.5 Random Projections

We will see later, especially in Part IV, that it is often useful to consider random

projection matrices rather than Φ with i.i.d. sub-Gaussian entries. A random pro-

jection is simply an orthogonal projection onto a randomly selected subspace. The

two constructions are closely related — the main difference being that the matrices

described above are not orthogonal projection matrices, which would require that

they have orthonormal rows.

However, random projections share the same key properties as the constructions

described above. First, we note that if Φ has orthonormal rows spanning a random

subspace, then ΦΦT = I, and so PΦT = ΦTΦ. It follows that ‖PΦT s‖ = ‖ΦTΦs‖ =
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‖Φs‖, and for random orthogonal projections, it is known [88] that ‖PΦT s‖ = ‖Φs‖

satisfies

(1− δ)M
N
‖s‖2 ≤ ‖PΦT s‖2 ≤ (1 + δ)

M

N
‖s‖2 (4.30)

with probability at least 1−2e−CMδ2
for some constant C. This statement is analogous

to (4.16) but rescaled to account for the unit-norm rows of Φ. Note also that if Φ

is populated with i.i.d. zero-mean Gaussian entries (of any fixed variance), then the

orientation of the row space of Φ has random uniform distribution. Thus, ‖PΦT s‖ for

a Gaussian Φ has the same distribution as ‖PΦT s‖ for a random orthogonal projection.

It follows that Gaussian Φ also satisfy (4.30) with probability at least 1− 2e−CMδ2
.

The similarity between (4.30) and (4.16) immediately implies that we can gen-

eralize Theorem 4.3, Lemma 4.6, and Corollaries 4.3 and 4.4 to establish δ-stable

embedding results for orthogonal projection matrices PΦT . It follows that, when Φ is

a Gaussian matrix (with entries satisfying (4.17)) or a random orthogonal projection

(multiplied by
√
N/M), the number of measurements required to establish a δ-stable

embedding for
√
N/MPΦT on a particular signal family S is equivalent to the number

of measurements required to establish a δ-stable embedding for Φ on S.

4.6 Deterministic Guarantees and Random

Matrix Constructions

Throughout this thesis, we state a variety of theorems that begin with the as-

sumption that Φ is a stable embedding of a set or satisfies the RIP and then use this

assumption to establish performance guarantees for a particular algorithm. These

guarantees are typically completely deterministic and hold for any Φ that is a stable

embedding. However, we use random constructions as our main tool for obtaining

stable embeddings. Thus, all of our results could be modified to be probabilistic
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statements in which we fix M and then argue that with high probability, a random

Φ is a stable embedding. Of course, the concept of “high probability” is somewhat

arbitrary. However, if we fix this probability of error to be an acceptable constant ρ,

then as we increase M , we are able to reduce δ to be arbitrarily close to 0. This will

typically improve the accuracy of the guarantees.

As a side comment, it is important to note that in the case where one is able to

generate a new Φ before acquiring each new signal x, then it is sometimes possible

to drastically reduce the required M . This is because one may be able to potentially

eliminate the requirement that Φ is a stable embedding for an entire class of candidate

signals x, and instead simply argue that for each x, a new random matrix Φ with

M very small preserves the norm of x, which is sufficient in some settings. Thus, if

such a probabilistic “for each” guarantee is acceptable, then it is sometimes possible

to place no assumptions on the signals being sparse, or indeed having any structure

at all. This is particularly true for the results discussed in Part IV. However, in

the remainder of this thesis we will restrict ourselves to the sort of deterministic

guarantees that hold for a class of signals when Φ provides a stable embedding of

that class.



Chapter 5

Compressive Measurements in

Practice

In this chapter1 we discuss various strategies for designing systems for acquiring

random, compressive measurements of real-world signals. In order to accomplish this,

we must address two main challenges. First, note that the suggested design procedure

from Chapter 4 is essentially to pick the entries of Φ at random, in a completely

unstructured manner. This approach can be potentially problematic in the case

where N is very large, as is typically the case in our applications of interest. This

is because the matrix Φ must be stored/transmitted along with the measurements

in order to be able to recover the original signal. When N is large, the size of

the matrix MN can be can become impractically large. Moreover, the recovery

algorithms described in Section 2.4 typically must repeatedly apply the matrix Φ,

which in the unstructured case will require O(MN) computations. For large N and

M , this cost can easily become prohibitively large. To address these challenges, we

will draw on the same techniques often used in the data streaming literature [62] and

1This chapter provides an overview of collaborations with and independent work by: Richard
G. Baraniuk, Dror Baron, Marco F. Duarte, Kevin F. Kelly, Sami Kirolos, Jason N. Laska, Yehia
Massoud, Tamer S. Ragheb, Justin K. Romberg, Shriram Sarvotham, Ting Sun, Dharmpal Takhar,
John Treichler, Joel A. Tropp, and Michael B. Wakin.

64
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consider pseudorandom matrices (in which case we only need to store/transmit the

random seed used to generate Φ rather than the matrix itself) as well as matrices

that have considerable amount of structure, admitting efficient or transform-based

implementations.

However, there is a second, potentially even more difficult challenge. The acquisi-

tion framework developed in Chapters 3 and 4 assumes that the signal to be acquired

is a vector in RN , while in practice we will be interested in designing systems for

continuous-time, analog signals or images. In this chapter we will show that in many

cases, it is possible to design a system that directly operates on a continuous-time

signal to acquire compressive measurements without first sampling the signal. We

then show that these measurements can be related to an equivalent system that first

samples the signal at its Nyquist-rate, and then applies a matrix Φ to the sampled

data.

We primarily focus on two signal acquisition architectures: the single-pixel camera

and the random demodulator. The single-pixel camera uses a Texas Instruments

DMD array and a single light sensor to optically compute inner products between an

image and random patterns. By changing these patterns over time, we can build up a

collection of random measurements of an image. The random demodulator provides

a CS-inspired hardware architecture for acquiring wideband analog signals.

5.1 The Single-Pixel Camera

5.1.1 Architecture

Several hardware architectures have been proposed that enable the acquisition of

compressive measurements in an imaging setting [56–58]. We will focus on the so-

called single-pixel camera [56, 99–102]. The single-pixel camera is an optical computer

that sequentially measures the inner products y[j] = 〈x, φj〉 between an N -pixel
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Figure 5.1: Single-pixel camera block diagram. Incident light-field (corresponding to
the desired image x) is reflected off a digital micromirror device (DMD) array whose mirror
orientations are modulated according to the pseudorandom pattern φj supplied by a random
number generator. Each different mirror pattern produces a voltage at the single photodiode
that corresponds to one measurement y[j].

sampled version of the incident light-field from the scene under view (denoted by

x) and a set of N -pixel test functions {φj}Mj=1. The architecture is illustrated in

Figure 5.1, and an aerial view of the camera in the lab is shown in Figure 5.2. As shown

in these figures, the light-field is focused by a lens (Lens 1 in Figure 5.2) not onto a

CCD or CMOS sampling array but rather onto a spatial light modulator (SLM). An

SLM modulates the intensity of a light beam according to a control signal. A simple

example of a transmissive SLM that either passes or blocks parts of the beam is an

overhead transparency. Another example is a liquid crystal display (LCD) projector.

The Texas Instruments (TI) digital micromirror device (DMD) is a reflective SLM

that selectively redirects parts of the light beam. The DMD consists of an array

of bacterium-sized, electrostatically actuated micro-mirrors, where each mirror in

the array is suspended above an individual static random access memory (SRAM)

cell. Each mirror rotates about a hinge and can be positioned in one of two states

(±10 degrees from horizontal) according to which bit is loaded into the SRAM cell;

thus light falling on the DMD can be reflected in two directions depending on the

orientation of the mirrors.

Each element of the SLM corresponds to a particular element of φj (and its cor-



67

Figure 5.2: Aerial view of the single-pixel camera in the lab.

responding pixel in x). For a given φj, we can orient the corresponding element of

the SLM either towards (corresponding to a 1 at that element of φj) or away from

(corresponding to a 0 at that element of φj) a second lens (Lens 2 in Figure 5.2). This

second lens collects the reflected light and focuses it onto a single photon detector

(the single pixel) that integrates the product of x and φj to compute the measure-

ment y[j] = 〈x, φj〉 as its output voltage. This voltage is then digitized by an A/D

converter. Values of φj between 0 and 1 can be obtained by dithering the mirrors

back and forth during the photodiode integration time. By reshaping x into a column

vector and the φj into row vectors, we can thus model this system as computing the

product y = Φx, where each row of Φ corresponds to a φj. To compute randomized

measurements, we set the mirror orientations φj randomly using a pseudorandom

number generator, measure y[j], and then repeat the process M times to obtain the

measurement vector y.

The single-pixel design reduces the required size, complexity, and cost of the

photon detector array down to a single unit, which enables the use of exotic detectors

that would be impossible in a conventional digital camera. Example detectors include
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a photomultiplier tube or an avalanche photodiode for low-light (photon-limited)

imaging, a sandwich of several photodiodes sensitive to different light wavelengths for

multimodal sensing, a spectrometer for hyperspectral imaging, and so on.

In addition to sensing flexibility, the practical advantages of the single-pixel design

include the facts that the quantum efficiency of a photodiode is higher than that of the

pixel sensors in a typical CCD or CMOS array and that the fill factor of a DMD can

reach 90% whereas that of a CCD/CMOS array is only about 50%. An important

advantage to highlight is the fact that each CS measurement receives about N/2

times more photons than an average pixel sensor, which significantly reduces image

distortion from dark noise and read-out noise.

The single-pixel design falls into the class of multiplex cameras. The baseline

standard for multiplexing is classical raster scanning, where the test functions {φj}

are a sequence of delta functions δ[n− j] that turn on each mirror in turn. There are

substantial advantages to operating in a CS rather than raster scan mode, including

fewer total measurements (M for CS rather than N for raster scan) and significantly

reduced dark noise. See [56] for a more detailed discussion of these issues.

Figure 5.3 (a) and (b) illustrates a target object (a black-and-white printout of

an “R”) x and reconstructed image x̂ taken by the single-pixel camera prototype in

Figure 5.2 using N = 256 × 256 and M = N/50 [56]. Figure 5.3(c) illustrates an

N = 256× 256 color single-pixel photograph of a printout of the Mandrill test image

taken under low-light conditions using RGB color filters and a photomultiplier tube

with M = N/10. In both cases, the images were reconstructed using Total Variation

minimization, which is closely related to wavelet coefficient `1 minimization [15].

5.1.2 Discrete formulation

Since the DMD array is programmable, we can employ arbitrary test functions φj.

However, even when we restrict the φj to be {0, 1}-valued, storing these patterns for
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(a) (b) (c)

Figure 5.3: Sample image reconstructions from single-pixel camera. (a) 256×256 conven-
tional image of a black-and-white “R”. (b) Image reconstructed from M = 1300 single-pixel
camera measurements (50× sub-Nyquist). (c) 256×256 pixel color reconstruction of a print-
out of the Mandrill test image imaged in a low-light setting using a single photomultiplier
tube sensor, RGB color filters, and M = 6500 random measurements.

large values of N is impractical. Furthermore, as noted above, even pseudorandom

Φ can be computationally problematic during recovery. Thus, rather than purely

random Φ, we can also consider Φ that admit a fast transform-based implementation

by taking random submatrices of a Walsh, Hadamard, or noiselet transform [103, 104].

We will describe the Walsh transform for the purpose of illustration.

We will suppose that N is a power of 2 and let Wlog2N denote the N ×N Walsh

transform matrix. We begin by setting W0 = 1, and we now define Wj recursively as

Wj =
1√
2

 Wj−1 Wj−1

Wj−1 −Wj−1

 .
This construction produces an orthonormal matrix with entries of ±1/

√
N that ad-

mits a fast implementation requiring O(N logN) computations to apply. As an ex-

ample, note that

W1 =
1√
2

 1 1

1 −1
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and

W2 =
1

2



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


.

We can exploit these constructions as follows. Suppose that N = 2B and generate

WB. Let IΓ denote a M×N submatrix of the identity I obtained by picking a random

set of M rows, so that IΓWB is the submatrix of WB consisting of the rows of WB

indexed by Γ. Furthermore, let D denote a random N ×N permutation matrix. We

can generate Φ as

Φ =

(
1

2

√
NIΓWB +

1

2

)
D. (5.1)

Note that 1
2

√
NIΓWB + 1

2
merely rescales and shifts IΓWB to have {0, 1}-valued en-

tries, and recall that each row of Φ will be reshaped into a 2-D matrix of numbers

that is then displayed on the DMD array. Furthermore, D can be thought of as either

permuting the pixels or permuting the columns of WB. This step adds some addi-

tional randomness since some of the rows of the Walsh matrix are highly correlated

with coarse scale wavelet basis functions — but permuting the pixels eliminates this

structure. Note that at this point we do not have any strict guarantees that such Φ

combined with a wavelet basis Ψ will yield a product ΦΨ satisfying the RIP, but this

approach seems to work well in practice.

5.2 The Random Demodulator

5.2.1 Architecture

We now turn to the question of acquiring compressive measurements of a continuous-

time signal x(t). Specifically, we would like to build an analog-to-digital converter
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(ADC) that avoids having to sample x(t) at its Nyquist rate when x(t) is sparse. In

this context, we will assume that x(t) has some kind of sparse structure in the Fourier

domain, meaning that it is still bandlimited but that much of the spectrum is empty.

We will discuss the different possible signal models for mathematically capturing this

structure in greater detail below. For now, the challenge is that our measurement

system must be built using analog hardware. This imposes severe restrictions on the

kinds of operations we can perform.

To be more concrete, since we are dealing with a continuous-time signal x(t), we

must also consider continuous-time test functions {φj(t)}Mj=1. We then consider a

finite window of time, say t ∈ [0, T ], and would like to collect M measurements of the

form

y[j] =

∫ T

0

x(t)φj(t) dt. (5.2)

Building an analog system to collect such measurements will require three main com-

ponents:

1. hardware for generating the test signals φj(t);

2. M correlators that multiply the signal x(t) with each respective φj(t); and

3. M integrators with a zero-valued initial state.

We could then sample and quantize the output of each of the integrators to collect

the measurements y[j]. Of course, even in this somewhat idealized setting, it should

be clear that what we can build in hardware will constrain our choice of φj(t) since

we cannot reliably and accurately produce (and reproduce) arbitrarily complex φj(t)

in analog hardware. Moreover, the architecture described above essentially requires

M correlator/integrator pairs operating in parallel, which will be potentially pro-

hibitively expensive both in terms of dollar cost as well as costs such as size, weight,

and power (SWAP).
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As a result, there have been a number of efforts to design simpler architectures,

chiefly by carefully designing structured φj(t). The simplest to describe and histori-

cally earliest idea is to choose φj(t) = δ(t− tj), where {tj}Mj=1 denotes a sequence of

M locations in time at which we would like to sample the signal x(t). Typically, if the

number of measurements we are acquiring is lower than the Nyquist-rate, then these

locations cannot simply be uniformly spaced in the interval [0, T ], but must be care-

fully chosen. Note that this approach simply requires a single traditional ADC with

the ability to sample on a non-uniform grid, avoiding the requirement for M parallel

correlator/integrator pairs. Such non-uniform sampling systems have been studied in

other contexts outside of the CS framework. For example, there exist specialized fast

algorithms for the recovery of extremely large Fourier-sparse signals. The algorithm

uses samples at a non-uniform sequence of locations that are highly structured, but

where the initial location is chosen using a (pseudo)random seed. This literature pro-

vides guarantees similar to those available from standard CS [105, 106]. Additionally,

there exist frameworks for the sampling and recovery of multi-band signals, whose

Fourier transforms are mostly zero except for a few frequency bands. These schemes

again use non-uniform sampling patterns based on coset sampling [23–27, 107]. Un-

fortunately, these approaches are often highly sensitive to jitter, or error in the timing

of when the samples are taken.

We will consider a rather different approach, which we call the random demod-

ulator [52, 108, 109].2 The architecture of the random demodulator is depicted in

Figure 5.4. The analog input x(t) is correlated with a pseudorandom square pulse of

±1s, called the chipping sequence pc(t), which alternates between values at a rate of

NaHz, where NaHz is at least as fast as the Nyquist rate of x(t). The mixed signal is

integrated over a time period 1/Ma and sampled by a traditional integrate-and-dump

2A correlator is also known as a “demodulator” due to its most common application: demodu-
lating radio signals.
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Figure 5.4: Random demodulator block diagram.

back-end ADC at MaHz � NaHz. In this case our measurements are given by

y[j] =

∫ j/Ma

(j−1)/Ma

pc(t)x(t) dt. (5.3)

In practice, data is processed in time blocks of period T , and we define N = NaT

as the number of elements in the chipping sequence, and M = MaT as the number

of measurements. We will discuss the discretization of this model below, but the

key observation is that the correlator and chipping sequence operate at a fast rate,

while the back-end ADC operates at a low rate. In hardware it is easier to build a

high-rate modulator/chipping sequence combination than a high-rate ADC [109]. In

fact, many systems already use components of this front end for binary phase shift

keying demodulation, as well as for other conventional communication schemes such

as CDMA.

5.2.2 Discrete formulation

Although the random demodulator directly acquires compressive measurements

without first sampling x(t), it is equivalent to a system which first samples x(t) at its

Nyquist-rate to yield a discrete-time vector x, and then applies a matrix Φ to obtain

the measurements y = Φx. To see this we let pc[n] denote the sequence of ±1 used to
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generate the signal pc(t), i.e., pc(t) = pc[n] for t ∈ [(n−1)/Na, n/Na]. As an example,

consider the first measurement, or the case of j = 1. In this case, t ∈ [0, 1/Ma], so

that pc(t) is determined by pc[n] for n = 1, 2, . . . , Na/Ma. Thus, from (5.3) we obtain

y[1] =

∫ 1/Ma

0

pc(t)x(t) dt

=

Na/Ma∑
n=1

pc[n]

∫ n/Na

(n−1)/Na

x(t) dt.

But since Na is the Nyquist-rate of x(t),
∫ n/Na

(n−1)/Na
x(t) dt simply calculates the average

value of x(t) on the nth interval, yielding a sample denoted x[n]. Thus, we obtain

y[1] =

Na/Ma∑
n=1

pc[n]x[n].

In general, our measurement process is equivalent to multiplying the signal x with

the random sequence of ±1s in pc[n] and then summing every sequential block of

Na/Ma coefficients. We can represent this as a banded matrix Φ containing Na/Ma

pseudorandom ±1s per row. For example, with N = 12, M = 4, and T = 1, such a

Φ is expressed as

Φ =



−1 +1 +1

−1 +1 −1

+1 +1 −1

+1 −1 −1


. (5.4)

In general, Φ will have M rows and each row will contain N/M nonzeros. Note

that matrices satisfying this structure are extremely efficient to apply, requiring only

O(N) computations compared to O(MN) in the general case. This is extremely

useful during recovery.

A detailed analysis of the random demodulator in [52] studied the properties of
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these matrices applied to a particular signal model. Specifically, it is shown that if Ψ

represents the N ×N normalized discrete Fourier transform (DFT) matrix, then the

matrix ΦΨ will satisfy the RIP with high probability, provided that

M = O
(
K log2(N/K)

)
,

where the probability is taken with respect to the random choice of pc[n]. This means

that if x(t) is a periodic (or finite-length) signal such that once it is sampled it is

sparse or compressible in the basis Ψ, then it should be possible to recover x(t) from

the measurements provided by the random demodulator. Moreover, it is empirically

demonstrated that combining `1 minimization with the random demodulator can

recover K-sparse (in Ψ) signals with

M ≥ CK log(N/K + 1)

measurements where C ≈ 1.7 [52].

Note that the signal model considered in [52] is somewhat restrictive, since even

a pure tone will not yield a sparse DFT unless the frequency happens to be equal

to k/Na for some integer k. Perhaps a more realistic signal model is the multi-band

signal model of [23–27, 107], where the signal is assumed to be bandlimited outside

of K bands each of bandwidth B, where KB is much less than the total possible

bandwidth. It remains unknown whether the random demodulator can be exploited

to recover such signals. Moreover, there also exist other CS-inspired architectures

that we have not explored in this section [53, 54, 110], and this remains an active

area of research. We have simply provided an overview of one of the more promising

approaches so as to illustrate the potential applicability of this thesis to the problem

of analog-to-digital conversion.



Part III

Sparse Signal Recovery



Chapter 6

Sparse Recovery via Orthogonal

Greedy Algorithms

We now turn to the problem of recovering sparse signals from the kind of mea-

surements produced by the systems described in Part II. We begin by taking a closer

look at some of the greedy algorithms described in Sections 2.4.2 and 2.4.3 in the

context of matrices satisfying the RIP. Specifically, in this chapter1 we provide an

RIP-based theoretical framework for analyzing orthogonal greedy algorithms. First,

we provide an RIP-based analysis of the classical algorithm of OMP when applied

to recovering sparse signals in the noise-free setting. This analysis revolves around

three key facts: (i) that in each step of the algorithm, the residual vector r` can be

written as a matrix times a sparse signal, (ii) that this matrix satisfies the RIP, and

(iii) that consequently a sharp bound can be established for the vector h` of inner

products. Our main conclusion, Theorem 6.1, states that the RIP of order K + 1

(with δ < 1/(3
√
K)) is sufficient for OMP to exactly recover any K-sparse signal in

exactly K iterations. However, for restricted classes of K-sparse signals (those with

sufficiently strong decay in the nonzero coefficients), a relaxed bound on the isometry

1This work was done in collaboration with Michael B. Wakin [111].

77
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constant can be used. We then extend this analysis and use the same techniques to

establish a simple proof that under even weaker assumptions, ROMP will also succeed

in recovering K-sparse signals.

6.1 Orthogonal Matching Pursuit

Theoretical analysis of OMP to date has concentrated primarily on two fronts.

The first has involved the notion of a coherence parameter µ := maxi,j |〈φi, φj〉|,

where φi denotes column i of the matrix Φ. When the columns of Φ have unit norm

and µ < 1/(2K − 1), it has been shown [76] that OMP will recover any x ∈ ΣK from

the (noise-free) measurements y = Φx. This guarantee is deterministic and applies

to any matrix Φ having normalized columns and µ < 1/(2K − 1).

The second analytical front has involved the notion of probability. Suppose that

x ∈ ΣK and that Φ is drawn from a suitable random distribution (independently of

x) with M = O(K log(N)) rows. Then with high probability, OMP will recover x

exactly from the measurements y = Φx [45]. It is not guaranteed, however, that any

such fixed matrix will allow recovery of all sparse x simultaneously.

As an alternative to coherence and to probabilistic analysis, a large number of

algorithms within the broader field of sparse recovery have been studied using the RIP

as described in Chapter 3. As noted in Section 3.3, when it is satisfied, the RIP for a

matrix Φ provides a sufficient condition to guarantee successful sparse recovery using

a wide variety of algorithms [30, 32, 33, 35, 42–44, 77, 78, 112]. Nevertheless, despite

the considerable attention that has been paid to both OMP and the RIP, analysis of

OMP using the RIP has been relatively elusive to date. However, several alternative

greedy algorithms have been proposed — all essentially modifications of OMP — that

are apparently much more amenable to RIP-based analysis. Specifically, both ROMP

and CoSaMP, as well as Subspace Pursuit (SP) [35] and DThresh [33], are essentially
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all extensions of OMP that have been tweaked primarily to enable their analysis using

the RIP. For each of these algorithms it has been shown that the RIP of order CK

(where C ≥ 2 is a constant depending on the algorithm) with δ adequately small is

sufficient for exact recovery of K sparse signals. In this chapter we show that the

original formulation of OMP also satisfies this property.

Towards this end, we begin with some very simple observations regarding OMP

as presented in Algorithm 3. The key idea is to try to iteratively estimate a set Λ

that contains the locations of the nonzeros of x by starting with Λ = ∅ and then

adding a new element to Λ in each iteration. In order to select which element to

add, the algorithm also maintains a residual vector r /∈ R(ΦΛ) that represents the

component of the measurement vector y that cannot be explained by the columns of

ΦΛ. Specifically, at the beginning of the `th iteration, Λ` is our current estimate of

supp(x), and the residual r` is defined as r` = y − Φx` where supp(x`) ⊆ Λ`. The

element added to Λ` is the index of the column of Φ that has the largest inner product

with r`.

Our first observation is that r` can be viewed as the orthogonalization of y against

the previously chosen columns of Φ. To see this, note that the solution to the least

squares problem in the update step is given by

x`|Λ` = Φ†
Λ`y

x`|(Λ`)c = 0.

(6.1)

Thus we observe that

r` = y − Φx` = y − ΦΛ`Φ†
Λ`y = (I − PΛ`)y = P⊥Λ`y.

Note that it is not actually necessary to explicitly compute x` in order to calculate

r`.
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For our second observation, we define AΛ := P⊥Λ Φ. This matrix is the result of

orthogonalizing the columns of Φ against R(ΦΛ). It is therefore equal to zero on

columns indexed by Λ. Note that in the proxy step, one may correlate r` either with

the columns of Φ or with the columns of AΛ` . To see this equivalence, observe that

r` = P⊥
Λ`y = P⊥

Λ`P
⊥
Λ`y = (P⊥

Λ`)
TP⊥

Λ`y and so

h` = ΦT r` = ΦT (P⊥Λ`)
TP⊥Λ`y = ATΛ`r

`. (6.2)

Incidentally, along these same lines we observe that

h` = ΦT r` = ΦTP⊥Λ`y = ΦT (P⊥Λ`)
Ty = ATΛ`y.

From this we note that it is not actually necessary to explicitly compute r` in order to

calculate the inner products during the proxy step; in fact, the original formulation

of OMP was stated with instructions to orthogonalize the remaining columns of Φ

against those previously chosen and merely correlate the resulting vectors against

y [71, 75]. Additionally, we recall that, in AΛ` , all columns indexed by Λ` will be zero.

It follows that

h`(j) = 0 ∀j ∈ Λ`, (6.3)

and so, since Λ` = Λ`−1 ∪ {j∗} with j∗ /∈ Λ`−1,

|Λ`| = `. (6.4)

Our third observation is that, in the case of noise-free measurements y = Φx, we

may write

r` = P⊥Λ`y = P⊥Λ`Φx = AΛ`x.

Again recalling that all columns of AΛ` indexed by Λ` are zero, we thus note that
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when supp(x) ⊆ Λ`, r` = 0, and from (6.1) we also know that x` = x exactly. It will

also be useful to note that for the same reason, we can also write

r` = AΛ`x̃`, (6.5)

where

x̃`|Λ` = 0 and x̃`|(Λ`)c = x|(Λ`)c . (6.6)

6.2 Analysis of OMP

Our analysis of OMP will center on the vector h`. In light of (6.2) and (6.5), we

see that AΛ` plays a role both in constructing and in analyzing the residual vector.

In Lemma 6.2 below, we show that the matrix AΛ` satisfies a modified version of the

RIP. This allows us to very precisely bound the values of the inner products in the

vector h`.

We begin with two elementary lemmas which will have repeated applications

throughout this thesis. Our first result, which is a straightforward generalization of

Lemma 2.1 of [78], states that RIP operators approximately preserve inner products

between sparse vectors.

Lemma 6.1. Let u, v ∈ RN be given, and suppose that a matrix Φ satisfies the RIP

of order max(‖u+ v‖0, ‖u− v‖0) with isometry constant δ. Then

|〈Φu,Φv〉 − 〈u, v〉| ≤ δ‖u‖2‖v‖2. (6.7)

Proof. We first assume that ‖u‖2 = ‖v‖2 = 1. From the fact that

‖u± v‖2
2 = ‖u‖2

2 + ‖v‖2
2 ± 2〈u, v〉 = 2± 2〈u, v〉
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and since Φ satisfies the RIP, we have that

(1− δ)(2± 2〈u, v〉) ≤ ‖Φu± Φv‖2
2 ≤ (1 + δ)(2± 2〈u, v〉).

From the parallelogram identity we obtain

〈Φu,Φv〉 =
1

4

(
‖Φu+ Φv‖2

2 − ‖Φu− Φv‖2
2

)
≤ (1 + 〈u, v〉)(1 + δ)− (1− 〈u, v〉)(1− δ)

2

= 〈u, v〉+ δ.

Similarly, one can show that 〈Φu,Φv〉 ≥ 〈u, v〉 − δ, and thus |〈Φu,Φv〉 − 〈u, v〉| ≤ δ.

The result follows for u, v with arbitrary norm from the bilinearity of the inner

product.

One consequence of this result is that sparse vectors that are orthogonal in RN

remain nearly orthogonal after the application of Φ. From this observation, it can be

demonstrated2 that if Φ has the RIP, then AΛ satisfies a modified version of the RIP.

Lemma 6.2. Suppose that Φ satisfies the RIP of order K with isometry constant δ,

and let Λ ⊂ {1, 2, . . . , N}. If |Λ| < K then

(
1− δ

1− δ

)
‖u‖2

2 ≤ ‖AΛu‖2
2 ≤ (1 + δ)‖u‖2

2 (6.8)

for all u ∈ RN such that ‖u‖0 ≤ K − |Λ| and supp(u) ∩ Λ = ∅.

Proof. From the definition of AΛ we may decompose AΛu as AΛu = Φu − PΛΦu.

Since PΛ is an orthogonal projection, we can write

‖Φu‖2
2 = ‖PΛΦu‖2

2 + ‖AΛu‖2
2. (6.9)

2This result was first proven in [113] and then independently in [35].
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Our goal is to show that ‖Φu‖2 ≈ ‖AΛu‖2, or equivalently, that ‖PΛΦu‖2 is small.

Towards this end, we note that since PΛΦu is orthogonal to AΛu,

〈PΛΦu,Φu〉 = 〈PΛΦu, PΛΦu+ AΛu〉

= 〈PΛΦu, PΛΦu〉+ 〈PΛΦu,AΛu〉

= ‖PΛΦu‖2
2. (6.10)

Since PΛ is a projection onto R(ΦΛ) there exists a z ∈ RN with supp(z) ⊆ Λ such

that PΛΦu = Φz. Furthermore, by assumption, supp(u) ∩ Λ = ∅. Hence 〈u, z〉 = 0

and from the RIP and Lemma 6.1,

|〈PΛΦu,Φu〉|
‖PΛΦu‖2‖Φu‖2

=
|〈Φz,Φu〉|
‖Φz‖2‖Φu‖2

≤ |〈Φz,Φu〉|
(1− δ)‖z‖2‖u‖2

≤ δ

1− δ
.

Combining this with (6.10), we obtain

‖PΛΦu‖2 ≤
δ

1− δ
‖Φu‖2.

Since we trivially have that ‖PΛΦu‖2 ≥ 0, we can combine this with (6.9) to obtain

(
1−

(
δ

1− δ

)2
)
‖Φu‖2

2 ≤ ‖AΛu‖2
2 ≤ ‖Φu‖2

2.

Since ‖u‖0 ≤ K, we can use the RIP to obtain

(
1−

(
δ

1− δ

)2
)

(1− δ)‖u‖2
2 ≤ ‖AΛu‖2

2 ≤ (1 + δ)‖u‖2
2,

which simplifies to (6.8).

In other words, if Φ satisfies the RIP of order K, then AΛ acts as an approximate

isometry on every (K−|Λ|)-sparse vector supported on Λc. From (6.5), we recall that
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the residual vector in OMP is formed by applying AΛ` to a sparse vector supported

on (Λ`)c. Combining the above results, then, we may bound the inner products h`(j)

as follows.

Lemma 6.3. Let Λ ⊂ {1, 2, . . . , N} and suppose x̃ ∈ RN with supp(x̃) ∩ Λ = ∅.

Define

h = ATΛAΛx̃. (6.11)

Then if Φ satisfies the RIP of order ‖x̃‖0 + |Λ|+ 1 with isometry constant δ, we have

|h(j)− x̃(j)| ≤ δ

1− δ
‖x̃‖2 (6.12)

for all j /∈ Λ.

Proof. From Lemma 6.2 we have that the restriction of AΛ to the columns indexed by

Λc satisfies the RIP of order (‖x̃‖0 + |Λ|+ 1)− |Λ| = ‖x̃‖0 + 1 with isometry constant

δ/(1− δ). By the definition of h, we also know that

h(j) = 〈AΛx̃, AΛej〉,

where ej denotes the jth vector from the cardinal basis. Now, suppose j /∈ Λ. Then

because ‖x̃± ej‖0 ≤ ‖x̃‖0 + 1 and supp(x̃± ej)∩Λ = ∅, we conclude from Lemma 6.1

that

|h(j)− x̃(j)| = |〈AΛx̃, AΛej〉 − 〈x̃, ej〉| ≤
δ

1− δ
‖x̃‖2‖ej‖2.

Noting that ‖ej‖2 = 1, we reach the desired conclusion.

With this bound on the inner products h`(j), we may derive a sufficient condition

under which the identification step of OMP will succeed.
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Corollary 6.1. Suppose that Λ, Φ, x̃ meet the assumptions specified in Lemma 6.3,

and let h be as defined in (6.11). If

‖x̃‖∞ >
2δ

1− δ
‖x̃‖2, (6.13)

we are guaranteed that arg maxj |h(j)| ∈ supp(x̃).

Proof. If (6.12) is satisfied, then for indices j /∈ supp(x̃), we will have

|h(j)| ≤ δ

1− δ
‖x̃‖2.

(Recall from (6.3) that h(j) = 0 for j ∈ Λ.) If (6.13) is satisfied, then there exists

some j ∈ supp(x̃) with

|x̃(j)| > 2δ

1− δ
‖x̃‖2.

From (6.12) and the triangle inequality, we conclude that for this index j,

|h(j)| > δ

1− δ
‖x̃‖2.

Thus, we have that maxj |h(j)| > |h(k)| for all k /∈ supp(x̃), which ensures that

arg maxj |h(j)| ∈ supp(x̃), as desired.

By choosing δ small enough, it is possible to guarantee that the condition (6.13)

is satisfied. In particular, the lemma below follows from standard arguments.

Lemma 6.4. For any u ∈ RN , ‖u‖∞ ≥ ‖u‖2/
√
‖u‖0.

Proof. Since we can bound |uj| ≤ ‖u‖∞ for all j, we have that

‖u‖2 =

√ ∑
j∈supp(u)

|uj|2 ≤
√ ∑

j∈supp(u)

‖u‖2
∞ =

√
‖u‖0‖u‖∞,

as desired.
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Putting these results together, we can now establish our main theorem concerning

OMP.

Theorem 6.1. Suppose that Φ satisfies the RIP of order K+1 with isometry constant

δ < 1/(3
√
K). Then for any x ∈ ΣK, OMP will recover x exactly from y = Φx in K

iterations.

Proof. The proof works by induction. We start with the first iteration where h0 =

ΦTΦx and note that Φ = A∅. Because ‖x‖0 ≤ K, Lemma 6.4 states that ‖x‖∞ ≥

‖x‖2/
√
K. One can also check that δ < 1/(3

√
K) implies that

2δ

1− δ
<

1√
K
.

Therefore, we are guaranteed that (6.13) is satisfied, and so from Corollary 6.1 we

conclude that arg maxj |h0(j)| ∈ supp(x).

We now consider the general induction step. Suppose that we are at iteration `

and that all previous iterations have succeeded, by which we mean that Λ` ⊆ supp(x).

From (6.6), we know that supp(x̃`) ∩ Λ` = ∅ and that ‖x̃`‖0 ≤ K − `. From (6.4),

we know that |Λ`| = `. By assumption, Φ satisfies the RIP of order K + 1 =

(K − `) + `+ 1 ≥ ‖x̃`‖0 + |Λ`|+ 1. Finally, using Lemma 6.4, we have that

‖x̃`‖∞ ≥
‖x̃`‖2√
K − `

≥ ‖x̃
`‖2√
K

>
2δ

1− δ
‖x̃`‖2.

From Corollary 6.1 we conclude that arg maxj |h`(j)| ∈ supp(x̃`) and hence Λ`+1 ⊆

supp(x).

6.3 Context

Let us place Theorem 6.1 in the context of the OMP literature. Using the RIP as

a sufficient condition to guarantee OMP performance is apparently novel. Moreover,
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the fact that our bound requires only the RIP of order K + 1 is apparently unique

among the published CS literature; much more common are results requiring the RIP

of order 1.75K [112], 2K [42, 78], 3K [30, 35], 4K [44], and so on. Of course, such

results often permit the isometry constant to be much larger.3

If one wishes to use the RIP of order K + 1 as a sufficient condition for exact

recovery of all K-sparse signals via OMP (as we have), then little improvement is

possible in relaxing the isometry constant δ above 1/(3
√
K). In particular, there

exists a matrix satisfying the RIP of order K + 1 with δ ≤ 1/
√
K for which there

exists a K-sparse signal x ∈ RN that cannot be recovered exactly via K iterations of

OMP. (This is conjectured in [35] with a suggestion for constructing such a matrix,

and for the case K = 2 we have confirmed this via experimentation.)

Unfortunately, Theorem 4.3 suggests that finding a matrix Φ satisfying the RIP

of order K + 1 with an isometry constant δ < 1/(3
√
K) will possibly require M =

O(K2 log(N/K)) random measurements. In fact, Theorem 3.4 tells us that this RIP

condition necessitates that we at least have M = O(K3/2). However, if one wishes to

guarantee exact recovery of all K-sparse signals via OMP (as we have), then there

is little room for further reducing M . In particular, it has been argued in a recent

paper concerned with uniform guarantees for greedy algorithms [115] that there exists

a constant C such that when M ≤ CK3/2, for most random M ×N matrices Φ there

will exist some K-sparse signal x ∈ RN that cannot be recovered exactly via K

iterations of OMP.

It is also worth comparing our RIP-based analysis with coherence-based anal-

ysis [76], as both techniques provide a sufficient condition for OMP to recover all

K-sparse signals. It has been shown [45] that in a random M × N matrix, the co-

3Recently, it was shown in [114] that the RIP of order K with δ < 0.307 is a sufficient condition
for recovery via `1 minimization in the absence of noise. In general it is important to note that
a smaller order of the RIP is not necessarily a weaker requirement if the required constant is also
significantly smaller due to Lemma 3.1. For example, Lemma 3.1 implies that if Φ satisfies the RIP
of order K + 1 with constant δ, then Φ also satisfies the RIP of order 2K with constant 4δ.
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herence parameter µ is unlikely to be smaller than log(N)/
√
M . Thus, to ensure

µ < 1/(2K − 1), one requires M = O(K2 log2(N)), which is roughly the same as

what is required by our analysis. We note that neither result is strictly stronger than

the other; we have confirmed experimentally that there exist matrices that satisfy our

RIP condition but not the coherence condition, and vice versa.

Finally, we note that the aforementioned modifications of OMP (the ROMP, SP,

CoSaMP, and DThresh algorithms) all have RIP-based guarantees of robust recovery

in noise and stable recovery of non-sparse signals. Until recently, no such RIP-based

or coherence-based guarantees had been established for OMP itself. However, there

has been recent progress in using the RIP and similar conditions to analyze the

performance of OMP on non-sparse signals [116]. The results of [116] can be adapted

to provide a guarantee of exact recovery for sparse signals, but the assumptions

required are stronger than the assumptions made in this work. Furthermore, a number

of additional open questions remain concerning the performance of OMP on non-

sparse signals, and performance in the presence of noise has yet to be fully addressed.

We speculate that our perspective may help to further the general understanding of

OMP and perhaps provide a route to such guarantees. At present, however, this

remains a topic of ongoing work [116–119].

6.4 Extensions

6.4.1 Strongly-decaying sparse signals

For even moderate values of the isometry constant δ there exist sparse signals

that we can ensure are recovered exactly. For example, if the decay of coefficients is

sufficiently strong in a sparse signal, we may use Lemma 6.3 to ensure that the signal

entries are recovered in the order of their magnitude.

For any x ∈ RN with ‖x‖0 ≤ K we denote by x′(j) the entries of x ordered by
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magnitude, i.e.,

|x′(1)| ≥ |x′(2)| ≥ · · · ≥ |x′(K)| ≥ 0

with x′(K + 1) = x′(K + 2) = · · · = x′(N) = 0.

Theorem 6.2. Suppose that Φ satisfies the RIP of order K+1 with isometry constant

δ < 1/3. Suppose x ∈ ΣK and that for all j ∈ {1, 2, . . . , K − 1},

|x′(j)|
|x′(j + 1)|

≥ α.

If

α >
1 + 2 δ

1−δ

√
K − 1

1− 2 δ
1−δ

, (6.14)

then OMP will recover x exactly from y = Φx in K iterations.

Proof. The proof again proceeds by induction. At each stage, OMP will choose the

largest entry of x̃`. To see this, note that by (6.12) we have

|h`(j)− x̃`(j)| ≤ δ

1− δ
‖x̃`‖2.

The nonzero entries of x̃` will be comprised of x′(`+ 1), x′(`+ 2), . . . , x′(K). Thus,

‖x̃`‖2 ≤
√
|x′(`+ 1)|2 + (K − 1)

|x′(`+ 1)|2
α2

=
|x′(`+ 1)|

α

√
α2 + (K − 1)

≤ |x
′(`+ 1)|
α

(α +
√
K − 1).

Now, for the specific index j at which x̃` has its largest entry, we have

|h`(j)| ≥ |x′(`+ 1)| − δ

1− δ
|x′(`+ 1)|

α

(
α +
√
K − 1

)
=
|x′(`+ 1)|

α

(
α− δ

1− δ

(
α +
√
K − 1

))
, (6.15)
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while for all other values of j we have

|h`(j)| ≤ |x′(`+ 2)|+ δ

1− δ
|x′(`+ 1)|

α

(
α +
√
K − 1

)
≤ |x

′(`+ 1)|
α

(
1 +

δ

1− δ

(
α +
√
K − 1

))
. (6.16)

From (6.14), it follows that (6.15) is greater than (6.16).

6.4.2 Analysis of other orthogonal greedy algorithms

We now demonstrate that the techniques used above can also be used to analyze

other orthogonal greedy algorithms. We focus on ROMP for the purpose of illustra-

tion, but similar methods should be able to simplify the analysis of other orthogonal

greedy algorithms such as SP.4

We first briefly recall the difference between ROMP and OMP, which lies only in

the identification step: whereas OMP adds only one index to Λ` at each iteration,

ROMP adds up to K indices to Λ` at each iteration. Specifically, ROMP first selects

the indices corresponding to the K largest elements in magnitude of h` (or all nonzero

elements of h` if h` has fewer than K nonzeros), and denotes this set as Ω`. The next

step is to regularize this set so that the values are comparable in magnitude. To do

this, we define R(Ω`) := {Ω ⊆ Ω` : |h`(i)| ≤ 2|h`(j)| ∀i, j ∈ Ω}, and set

Ω`
0 := arg max

Ω∈R(Ω`)

‖h`|Ω‖2,

i.e., Ω`
0 is the set with maximal energy among all regularized subsets of Ω`. Finally,

setting Λ`+1 = Λ` ∪ Ω`
0, the remainder of the ROMP algorithm is identical to OMP.

4Some of the greedy algorithms that have been proposed recently, such as CoSaMP and DThresh,
do not orthogonalize the residual against the previously chosen columns at each iteration, and so the
techniques above cannot be directly applied to these algorithms. However, this orthogonalization
step could easily be added (which in the case of CoSaMP yields an algorithm nearly identical to
SP). Orthogonalized versions of these algorithms could then be studied using these techniques.
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In order to analyze ROMP, we will need only two preliminary lemmas from [42],

which we state without proof. Note that Lemma 6.5, which is essentially a generaliza-

tion of Lemma 6.3, is stated using slightly weaker assumptions than are used in [42]

and, to be consistent with the rest of this thesis, uses the quadratic form of the RIP

(whereas [42] uses the non-quadratic form). However, the present version can easily

be obtained using the same proof techniques.

Lemma 6.5 (Needell-Vershynin [42]). Let Γ ⊂ {1, 2, . . . , N} and x ∈ RN be given.

Then if Φ satisfies the RIP of order |supp(x) ∪ Γ| with isometry constant δ, we have

‖(ΦTΦx)|Γ − x|Γ‖2 ≤ δ‖x‖2.

Lemma 6.6 (Needell-Vershynin [42]). Let u ∈ RK, K > 1, be arbitrary. Then there

exists a subset Γ ⊆ {1, . . . , K} such that |u(i)| ≤ 2|u(j)| for all i, j ∈ Γ and

‖u|Γ‖2 ≥
1

2.5
√

log2K
‖u‖2.

Using these lemmas, we now provide a simplified proof of the main result of [42]

concerning the recovery of sparse signals using ROMP.5

Theorem 6.3. Suppose that Φ satisfies the RIP of order 3K with isometry constant

δ ≤ 0.13/
√

log2K. Then for any x ∈ ΣK, ROMP will recover x exactly from y = Φx

in at most K iterations.

Proof. The proof works by showing that at each iteration,

|Ω`
0 ∩ supp(x)| ≥ 1

2
|Ω`

0|. (6.17)

5Note that we assume that Φ satisfies the RIP of order 3K with constant δ ≤ 0.13/
√

log2K.
Using Lemma 3.1, we can replace this with the assumption that Φ satisfies the RIP of order 2K
with constant δ ≤ .043/

√
log2K.
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If (6.17) is satisfied for 0, 1, . . . , `− 1, then at iteration ` we have that

|Λ` ∩ supp(x)| ≥ 1

2
|Λ`|. (6.18)

It follows that, before |Λ`| exceeds 2K, we will have supp(x) ⊆ Λ`. Because Φ

satisfies the RIP of order 3K > 2K, at termination, ΦΛ` will be full rank. From (6.1)

we conclude that x` = x exactly.

To prove (6.17), we again proceed by induction. Hence, we assume that (6.17)

holds for 0, 1, . . . , `− 1, and thus (6.18) holds for iteration `. We next assume for the

sake of a contradiction that (6.17) does not hold for iteration `, i.e., that

|Ω`
0 \ supp(x)| > 1

2
|Ω`

0|. (6.19)

Define the sets T = Ω`
0\supp(x) and S = supp(x)\Λ` = supp(x̃`), where x̃` is defined

as in (6.6). Recall that we can write h` = AT
Λ`AΛ`x̃`. Thus, using the assumption

that |T | > 1
2
|Ω`

0| and the facts that T ⊆ Ω`
0 and Ω`

0 ∈ R(Ω`), one can show that

‖h`|T‖2 ≥
1√
5
‖h`|Ω`

0
‖2. (6.20)

We now observe that

‖h`|Ω`
0
‖2 ≥

1

2.5
√

log2K
‖h`|Ω`‖2, (6.21)

which follows from Lemma 6.6 and the fact that Ω`
0 is the maximal regularizing set.

From the maximality of Ω` and the fact that |S| ≤ K, we have that ‖h`|Ω`‖2 ≥ ‖h`|S‖2,

so that by combining (6.20) and (6.21) we obtain

‖h`|T‖2 ≥
1

2.5
√

5 log2K
‖h`|S‖2. (6.22)

Note that |S ∪ supp(x̃`)| = |S| ≤ K and since |Λ`| ≤ 2K, from Lemma 6.2 we have
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that AΛ` satisfies the RIP of order at least K with constant δ/(1−δ), thus Lemma 6.5

implies that

‖h`|S − x̃`|S‖2 ≤
δ

1− δ
‖x̃`‖2.

Since x̃`|Sc = 0, ‖h`|S − x̃`|S‖2 ≥ ‖x̃`‖2 − ‖h`|S‖2, and thus

‖h`|S‖2 ≥
1− 2δ

1− δ
‖x̃`‖2.

Hence,

‖h`|T‖2 ≥
(1− 2δ)/(1− δ)

2.5
√

5 log2K
‖x̃`‖2. (6.23)

On the other hand, since |supp(x̃`)|+ |Λ` ∩ supp(x)| = K, from (6.18) we obtain that

|supp(x̃`)| ≤ K − |Λ`|/2. Thus, |T ∪ supp(x̃`)| ≤ |T | + |supp(x̃`)| ≤ 2K − |Λ`|/2.

Furthermore, AΛ` satisfies the RIP of order 3K − |Λ`| = 3K − |Λ`|/2− |Λ`|/2. Since

|Λ`| ≤ 2K, we have that AΛ` satisfies the RIP of order at least 2K − |Λ`|/2 with

constant δ/(1− δ). Thus, Lemma 6.5 also implies that

‖h`|T‖2 = ‖h`|T − x̃`|T‖2 ≤
δ

1− δ
‖x̃`‖2. (6.24)

This is a contradiction whenever the right-hand-side of (6.23) is greater than the right-

hand-side of (6.24), which occurs when δ < 1/(2 + 2.5
√

5 log2K). Since log2K ≥ 1,

we can replace this with the slightly stricter condition

δ < 1/((2 + 2.5
√

5)
√

log2K) ≈ 0.1317/
√

log2K.

Observe that when K = 1, this proof (as well as the proofs in [42, 43]) break

down since Lemma 6.6 does not apply. However, when K = 1 the ROMP algorithm

simply reduces to OMP. In this case we can apply Theorem 6.1 to verify that ROMP
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succeeds when K = 1 provided that Φ satisfies the RIP of order 2 with isometry

constant δ < 1/3.



Chapter 7

Sparse Recovery in White Noise

In practical settings such as those described in Chapter 5, there may be many

sources that contribute to noise in our measurements, including noise present in the

signal x, noise caused by the measurement hardware, quantization noise, and trans-

mission errors in the case where the measurements are sent over a noisy channel.

Fortunately, the RIP can provide us with a guarantee of stability to noise contam-

inating the measurements for many of the algorithms described in Section 2.4. In

general, it can be shown that if y = Φx+ e with x ∈ ΣK , then many common sparse

recovery algorithms will yield a recovered signal x̂ satisfying

‖x̂− x‖2 ≤ C0‖e‖2, (7.1)

as described in Section 2.4. Thus, CS systems are stable in the sense that if the

measurement error is bounded, then the reconstruction error is also bounded.

In this chapter1 we analyze the impact of noise on the acquisition and recovery

process more carefully. We first discuss the case where noise is added to the mea-

surements, and examine the performance of an oracle-assisted recovery algorithm.

1This chapter builds on work done in collaboration with Richard G. Baraniuk and John Treich-
ler [55]. Thanks also to J.P. Slavinsky for many useful discussions and helpful suggestions.
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We conclude that the performance of most standard sparse recovery algorithms is

near-optimal in the sense that it matches the performance of an oracle-assisted algo-

rithm. We then consider the case where noise is added to the signal itself. In the case

of white noise we show that compressive measurement systems like those described

in Chapter 5 amplify this noise by an amount determined only by the number of

measurements taken. Specifically, we observe that the recovered signal-to-noise ratio

(SNR) decreases by 3dB each time the number of measurements is reduced by a factor

of 2. This suggests that in low SNR settings, CS-based acquisition systems will be

highly susceptible to noise.

7.1 Impact of Measurement Noise on an Oracle

To begin, we take a closer look at the problem of sparse signal recovery in the

presence of measurement noise. Rather than directly analyzing a particular recon-

struction algorithm, we will instead consider the performance of an oracle-assisted

recovery algorithm that has perfect knowledge of the true location of the K nonzeros

of x, which we denote Λ = supp(x). While an oracle is typically not available, it

characterizes the best that we can hope to achieve using any practical algorithm. In

fact, we find that practical algorithms like CoSaMP typically perform almost as well

as the oracle-assisted recovery algorithm.

Specifically, the oracle-assisted recovery algorithm is to solve

x̂ = arg min
x

‖Φx− y‖2 subject to supp(x) = Λ, (7.2)

where Λ is provided by an oracle. Recall from (6.1) that the least-squares optimal



97

recovery of x restricted to the index set Λ is given by

x̂|Λ = Φ†Λy

x̂|Λc = 0.

(7.3)

Before establishing our main result concerning oracle-assisted recovery, we first estab-

lish the following useful lemma. In the statement of the lemma, we use the notation

sj(A) to denote the jth nonzero singular value of A, i.e., sj(A) is the square root of

the jth eigenvalue of ATA.

Lemma 7.1. Suppose that Φ is an M ×N matrix and let Λ be a set of indices with

|Λ| ≤ K and {sj(Φ†Λ)}Kj=1 denote the K nonzero singular values of Φ†Λ. If Φ satisfies

the RIP of order K with constant δ, then for j = 1, 2, . . . , K we have

1√
1 + δ

≤ sj(Φ
†
Λ) ≤ 1√

1− δ
. (7.4)

Proof. From the fact that Φ satisfies the RIP we immediately have that for any

u ∈ RK ,

(1− δ)uTu ≤ uTΦT
ΛΦΛu ≤ (1 + δ)uTu,

and thus by picking u to be the K singular vectors, we have that

sj(ΦΛ) ∈
[√

1− δ,
√

1 + δ
]

for j = 1, 2, . . . , K. Next recall that from the singular value decomposition (SVD) we

can write

ΦΛ = UΣV T ,

where U is an M × K matrix with orthonormal columns, V is a K × K unitary

matrix, and Σ is a K × K diagonal matrix whose diagonal entries are the singular
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values sj(ΦΛ).2 Using this representation, and assuming that ΦΛ is full rank, we can

write

Φ†Λ =
(
(UΣV T )TUΣV T

)−1
(UΣV T )T

=
(
V ΣUTUΣV T

)−1
V ΣUT

=
(
V Σ2V T

)−1
V ΣUT

= V
(
Σ2
)−1

V TV ΣUT

= V Σ−1UT .

Thus, the SVD of Φ†Λ is given by V Σ−1UT , and hence the singular values sj(Φ
†
Λ) are

simply given by 1/sj(ΦΛ), which establishes (7.4).

This allows us to prove the following result.

Theorem 7.1. Suppose that Φ satisfies the RIP of order K with constant δ. If

y = Φx + e where x ∈ ΣK and e is an arbitrary vector in RM , then the recovery

provided by (7.3) when Λ = supp(x) satisfies

‖x̂− x‖2
2 ≤
‖e‖2

2

1− δ
. (7.5)

Proof. We begin with the observation that when using the oracle, we have that x̂|Λc =

x|Λc , so that

‖x̂− x‖2 = ‖x̂|Λ − x|Λ‖2 = ‖Φ†Λy − x|Λ‖2

= ‖(ΦT
ΛΦΛ)−1ΦT

Λ(Φx+ e)− x|Λ‖2

= ‖(ΦT
ΛΦΛ)−1ΦT

Λ(ΦΛx|Λ + e)− x|Λ‖2

= ‖x|Λ + (ΦT
ΛΦΛ)−1ΦT

Λe− x|Λ‖2 = ‖Φ†Λe‖2.

2Note that we are considering here the reduced form of the SVD.
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In words, the oracle-assisted recovery algorithm will achieve an exact recovery of x,

but the recovery will be contaminated by the noise ‖Φ†Λe‖2. We can bound this error

since, from Lemma 7.1, we have that the maximum singular value of Φ†Λ is bounded

above by 1/
√

1− δ. Thus, for any e ∈ RM , we have that

‖Φ†Λe‖
2
2 ≤
‖e‖2

2

1− δ
,

which establishes (7.5).

Thus, the bound in (7.1) is optimal (up to a constant factor), since it matches the

performance of an oracle-assisted recovery algorithm.

7.2 Impact of White Measurement Noise

While Theorem 7.1 characterizes the worst-case performance of the oracle-assisted

recovery algorithm in the presence of arbitrary noise, it is also instructive to consider

the expected performance in a more typical form of measurement noise. For example,

in many common settings it is more natural to assume that the noise vector e ∼

N (0, σ2I), i.e., e is i.i.d. Gaussian noise. We will consider the more general case

where e is generated according to a white noise process, meaning that

E (e) = 0 (7.6)

and

E
(
eeT
)

= σ2I. (7.7)
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In other words, e is zero-mean, uncorrelated noise. Note that (7.7) implies that for

any j, E(e2
j) = σ2, and for any j 6= i, E(ejei) = 0. Thus, in this case we have that

E
(
‖e‖2

2

)
= E

(
M∑
j=1

e2
j

)

=
M∑
j=1

E
(
e2
j

)
= Mσ2.

Hence, Theorem 7.1 might suggest that the best we can say is that given a typical

noise vector, ‖x̂−x‖2
2 ≤Mσ2/(1− δ). However, we will now see that we actually can

expect to do somewhat better than this.

Theorem 7.2. Suppose that y = Φx + e where e ∈ RM is a white random vector

satisfying (7.6) and (7.7). Furthermore, suppose that x ∈ ΣK and that Φ satisfies

the RIP of order K with constant δ. Then the oracle-assisted recovery algorithm with

solution defined by (7.3) for Λ = supp(x) satisfies

Kσ2

1 + δ
≤ E

(
‖x− x̂‖2

2

)
≤ Kσ2

1− δ
. (7.8)

Proof. Recall that for the oracle-assisted recovery algorithm, we have that

x̂|Λ = x|Λ + Φ†Λe.

Thus, our goal is to estimate E
(
‖Φ†Λe‖2

2

)
. Towards this end, we first note that for

any K ×M matrix A with entries aij, since e is a white random vector, we have

E
(
‖Ae‖2

2

)
= E

(
K∑
i=1

[Ae]2i

)

= E

 K∑
i=1

(
M∑
j=1

aijej

)2
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= E

(
K∑
i=1

(
M∑
j=1

a2
ije

2
j +

∑
j 6=k

aijejaikek

))

=
K∑
i=1

(
M∑
j=1

a2
ijE
(
e2
j

)
+
∑
j 6=k

aijaikE (ejek)

)

=
K∑
i=1

M∑
j=1

a2
ijσ

2 = σ2‖A‖2
F ,

where ‖ · ‖F denotes the Frobenius norm of A. Next we recall that the Frobenius

norm of a K ×M matrix with K < M can also be calculated as

‖A‖2
F =

K∑
j=1

sj(A)2,

where {sj(A)}Kj=1 represent the singular values of A. Thus,

E
(
‖Φ†Λe‖

2
2

)
= σ2

K∑
j=1

sj(Φ
†
Λ)2,

From Lemma 7.1 we have that sj(Φ
†
Λ) ∈

[
1/
√

1 + δ, 1/
√

1− δ
]

for j = 1, 2, . . . , K,

and hence

K

1 + δ
≤

K∑
j=1

sj

(
Φ†Λ

)2

≤ K

1− δ
,

which establishes (7.8).

Note that while E (‖e‖2
2) = Mσ2, E (‖x− x̂‖2

2) ≈ Kσ2. Thus, the expected energy

in the error is lower than the predicted worst-case bound by a factor of K/M . This

will prove significant in the following sections.

7.3 Impact of White Signal Noise

We now consider the case where the signal, as opposed to the measurements, are

contaminated with noise. Thus, rather than the standard setting where y = Φx + e,



102

we now consider the case where

y = Φ(x+ n) = Φx+ Φn. (7.9)

This noise situation is subtly different from the standard setting because the noise

added to the measurements has now has been acted upon by the matrix Φ, and so

it is possible that Φn could be potentially rather large. Our chief interest here is to

understand how Φ impacts the signal noise.

In order to simplify our analysis, we will make two assumptions concerning Φ: (i)

the rows of Φ are orthogonal and (ii) each row of Φ has equal norm. While these

assumptions are not necessary to ensure that Φ satisfies the RIP, both are rather

intuitive. For example, it seems reasonable that if we wish to take as few measure-

ments as possible, then each measurement should provide as much new information

about the signal as possible, and thus requiring the rows of Φ to be orthogonal seems

natural. Moreover, the second assumption can simply be interpreted as requiring

that each measurement have “equal weight”. Note that randomly generated Φ matri-

ces will approximately satisfy these properties, and if Φ is an orthogonal projection,

then it automatically satisfies these properties. Furthermore, these assumptions hold

for both of the Φ matrices corresponding to the practical architectures described in

Chapter 5.

These properties essentially ensure that if n is white noise, then Φn will be white

noise as well, allowing us to more easily analyze the impact of white signal noise as

quantified in the following theorem.

Theorem 7.3. Suppose that Φ satisfies the RIP of order K with constant δ. Suppose

furthermore that the rows of Φ are orthogonal and that each row of Φ has equal norm.

If n ∈ RN is a zero-mean, white random vector with E
(
nnT

)
= σ2I, then Φn is also
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a zero-mean, white random vector with E
(
Φn(Φn)T

)
= σ̃2I, where

N

M
σ2(1− δ) ≤ σ̃2 ≤ N

M
σ2(1 + δ). (7.10)

Proof. We begin by noting that

E ([Φn]i) = E

(
N∑
j=1

φijnj

)
=

N∑
j=1

φijE (nj) = 0,

so that Φn is zero-mean, as desired. Hence, we now consider E
([

Φn(Φn)T
]
ij

)
. We

begin by considering the diagonal entries for which i = j. In this case we have that

E
([

Φn(Φn)T
]
ii

)
= E

( N∑
k=1

φiknk

)2


= E

(
N∑
k=1

φ2
ikn

2
k +

∑
k 6=`

φikφi`nkn`

)

=
N∑
k=1

φ2
ikE(n2

k) +
∑
k 6=`

φikφi`E(nkn`)

=
N∑
k=1

φ2
ikσ

2 = ‖φi‖2
2σ

2,

where φi represents the ith row of Φ. Note that, by assumption, ‖φi‖2
2 = ‖φ1‖2

2 for all

i, so that

E
([

Φn(Φn)T
]
ii

)
= ‖φ1‖2

2σ
2 (7.11)

for all i.

Before we calculate ‖φ1‖2
2, we consider the off-diagonal case where i 6= j. In this

case we have that

E
([

Φn(Φn)T
]
ij

)
= E

((
N∑
k=1

φiknk

)(
N∑
`=1

φj`n`

))
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= E

(
N∑
k=1

φikφjkn
2
k +

∑
k 6=`

φikφj`nkn`

)

=
N∑
k=1

φikφjkE(n2
k) +

∑
k 6=`

φikφj`E(nkn`)

=
N∑
k=1

φikφjkσ
2

= 0,

where the last equality follows from the assumption that the rows of Φ are orthogonal.

Thus, E
(
Φn(Φn)T

)
is the identity matrix scaled by σ̃2 = σ2‖φ1‖2

2.

It remains to show (7.10). We begin by applying the RIP to the set of 1-sparse

binary vectors, from which we obtain that for any j,

(1− δ) ≤
M∑
i=1

φ2
ij ≤ (1 + δ).

Thus,

(1− δ)N ≤ ‖Φ‖2
F (1 + δ)N.

Since each row of Φ has equal norm, we must have that that ‖φ1‖2
2 = ‖Φ‖2

F/M , and

hence

(1− δ)N
M
≤ ‖φ1‖2

2 ≤ (1 + δ)
N

M
,

which when combined with (7.11) yields the desired result.

Thus, while the oracle-assisted recovery procedure served to mildly attenuate

white noise added to the measurements, when the noise is added to the signal it-

self it can be highly amplified by the measurement process when M � N . This is

directly analogous to a classical phenomenon known as noise folding.
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7.4 Noise Folding in CS

Theorem 7.3 tells us that the kinds of Φ matrices used in CS will amplify white

noise by a factor of N/M . This makes sense intuitively, since we are projecting all of

the noise in the N -dimensional input signal down into the M -dimensional measure-

ments y, and all of the noise power must be preserved. In the literature, this effect is

known as noise folding.

In order to quantify the impact of noise folding, we define the input signal-to-noise

ratio (ISNR) and output signal-to-noise ratio (OSNR) as

ISNR =
‖x‖2

2

‖(x+ n)|Γ − x‖2
2

(7.12)

and

OSNR =
‖x‖2

2

‖x̂− x‖2
2

, (7.13)

where Γ = supp(x) and x̂ is the output of the oracle-assisted recovery algorithm

in (7.3) applied to y = Φ(x + n). The ISNR essentially measures the SNR for an

oracle-assisted denoising algorithm that has access to the full signal x+ n. Since the

oracle knows which elements should be zero, it is able to achieve zero error on those

coefficients — the only impact of the noise is on the nonzero coefficients. The OSNR

measures the SNR for an oracle-assisted algorithm which must recover the original

signal from the measurements y = Φ(x+n). We now define the expected SNR loss as

Expected SNR loss =
E(ISNR)

E(OSNR)
=

E (‖x̂− x‖2
2)

E (‖(x+ n)|Γ − x‖2
2)
. (7.14)

In the event that the noise n is a white random vector, we can estimate the

expected SNR loss as follows.
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Theorem 7.4. Suppose that Φ satisfies the RIP of order K with constant δ. Suppose

furthermore that the rows of Φ are orthogonal and that each row of Φ has equal norm.

If n ∈ RN is a zero-mean, white random vector, then the expected SNR loss is bounded

by

N

M
· 1− δ

1 + δ
≤ Expected SNR loss ≤ N

M
· 1 + δ

1− δ
. (7.15)

Proof. Since n is white, we have that E
(
nnT

)
= σ2I. From this and the fact that

(x+ n)|Γ − x = n|Γ, we have that

E
(
‖(x+ n)|Γ − x‖2

2

)
= Kσ2. (7.16)

We then observe that from Theorem 7.3, we have that y = Φx + Φn, where Φn is a

white random vector with E
(
Φn(Φn)T

)
= σ̃2I, where σ̃ satisfies (7.10). Since Φn is

white, we can apply Theorem 7.2 to obtain

Kσ̃2

1 + δ
≤ E

(
‖x− x̂‖2

2

)
≤ Kσ̃2

1− δ
.

By combining this with the bound for σ̃ in (7.10) we obtain

Kσ2 · N
M
· 1− δ

1 + δ
≤ E

(
‖x− x̂‖2

2

)
≤ Kσ2 · N

M
· 1 + δ

1− δ
. (7.17)

Taking the ratio of (7.17) and (7.16) and simplifying establishes the theorem.

Noise folding has a significant impact on the amount of noise present in CS mea-

surements. Specifically, if we measure the expected SNR loss in dB, then we have

that

Expected SNR loss ≈ 10 log10

(
N

M

)
.

Thus, every time we cut M in half (a one octave increase in the amount of subsam-

pling), the expected SNR loss increases by 3dB. In other words, for the acquisition of
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Figure 7.1: Simulation of signal recovery in noise. Output SNR as a function of the
subsampling ratio N/M for a signal consisting of a single unmodulated voice channel in the
presence of additive white noise.

a sparse signal in white noise, the SNR of the recovered signal decreases by 3 dB for

every octave increase in the amount of subsampling.

We note that alternative signal acquisition techniques like bandpass sampling (sam-

pling a narrowband signal uniformly at a sub-Nyquist rate to preserve the values

but not the locations of its large Fourier coefficients) are affected by an identical

3dB/octave SNR degradation [120]. However, in practice bandpass sampling suffers

from the limitation that it is impossible to determine the original original center

frequencies after sampling. Furthermore, if there are multiple narrowband signals

present, then bandpass sampling causes irreversible aliasing, in which case the com-

ponents can overlap and will be impossible to separate. In contrast to bandpass

sampling, however, CS acquisition preserves sufficient information to enable the re-

covery of both the values and the locations of the large Fourier coefficients.

The 3dB/octave SNR degradation represents an important tradeoff in the design

of CS-based acquisition systems. Figure 7.1 shows the results of a set of simulations

of a CS-based wideband signal acquisition system. In this case the signal to be
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acquired consists of a single 3.1 kHz-wide unmodulated voice signal single-side-band-

upconverted to a frequency within a 1 MHz input bandwidth of the receiver. In

this case performance is measured as a function of the subsamping ratio N/M . The

testing shown in Figure 7.1 was conducted at three input SNRs — 60, 40, and 20

dB — where input SNR in this case is simply the ratio of the signal power to that

of the noise within the 3.1 kHz bandwidth occupied by the signal. The output SNR,

measured classically within the 3.1 kHz signal bandwidth, was evaluated three ways:

� Bandpass sampling — This is not a recommended practical technique, but it

serves as a benchmark since it is “filterless” like CS. It is important to note

that this method “folds” the input spectrum so that signal frequencies can no

longer be unambiguously determined at the receiver.

� Oracle-assisted signal recovery from compressive measurements — While not

practical, again, the oracle provides a way to determine what portion of any ob-

served received quality degradation is totally unavoidable within the CS frame-

work and what portion is due to the recovery algorithm’s inability to determine

the spectral support.

� Practical CS-based signal recovery using CoSaMP to determine the spectral

support of the input signal.

We can make several observations from the experimental results depicted in Fig-

ure 7.1. First, we note that for small amounts of subsampling the output SNR of

both the bandpass sampled signal and the oracle-assisted CS recovery is degraded

at a rate of 3dB for each octave increase in the ratio N/M , exactly as predicted by

theory. Next, we note that the output SNR of the oracle-assisted recovery approach

closely follows the bandpass sampling output SNR across the entire range considered

for N/M . The performance of the CoSaMP algorithm generally tracks the others,

but performs progressively more poorly for high subsampling ratios. Moreover, its
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performance collapses as the theoretical limit is reached and as the input SNR falls

below a critical level. Specifically, our theory requires that M > C1K log(N/K), and

thus we must have that

N

M
<

1

C1

(N/K)

log(N/K)
.

Note that for these experiments, N/K = (2 ·106)/(3.1 ·103) ≈ 645, and thus, ignoring

the effect of the unknown constant C1, we should expect that the maximum allowable

amount of subsampling should be bounded roughly by 645/ log(645) ≈ 100. This

corresponds to log2(N/M) ≈ 6.6. In Figure 7.1 we observe that we do not begin

to observe a dramatic difference between the performance of oracle-assisted CS and

CoSaMP until log2(N/M) > 7. In the regimes where the performance of CoSaMP

is significantly worse than that of oracle-assisted recovery, we observe that oracle-

assisted recovery continues to match the SNR of the bandpass sampled signal. This

indicates that in these regimes, CoSaMP is unable to identify the correct locations of

the nonzero Fourier coefficients, since if it could it would match the oracle-assisted

recovery approach, i.e., support estimation is the harder part of CS recovery (as

opposed to coefficient estimation). Thus, if any side information concerning the likely

locations of these nonzeros were available, then one could expect that exploiting this

information would have a significant impact on the SNR performance.



Chapter 8

Sparse Recovery in Sparse Noise

In Chapter 7 we considered the case where our signal or measurements were cor-

rupted with unstructured noise that was either bounded or bounded with high proba-

bility. These results are well-suited to deal with noise that is evenly distributed across

the signal or measurements, such as i.i.d. Gaussian, thermal, or quantization noise.

However, in other cases our noise will satisfy some additional structure. We will have

more to say regarding structured signal noise in Chapter 10, but in this chapter1 we

analyze the case where the noise itself is also sparse. We demonstrate that in addition

to satisfying the RIP, the same random matrices considered in Chapter 4 satisfy an

additional property that leads to measurements that are guaranteed to be robust to

a small number of arbitrary corruptions and to other forms of sparse measurement

noise. We propose an algorithm dubbed Justice Pursuit that can exploit this struc-

ture to recover sparse signals in the presence of corruption. We then show that this

structure can be viewed as an example of a more general phenomenon. Specifically,

we propose a definition of democracy in the context of CS and leverage our analysis

of Justice Pursuit to show that random measurements are democratic. We conclude

with a brief discussion of the broader role of democracy in CS.

1This work was done in collaboration with Richard G. Baraniuk, Petros T. Boufounos, and Jason
N. Laska [121, 122].
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8.1 Measurement Corruption

In this chapter, we consider a more structured measurement noise model, namely

y = Φx+ Ωe, (8.1)

where Ω is an M × L matrix with L ≤ M orthonormal columns, and the vector e is

sparse. The matrix Ω represents the basis or subspace in which the noise is sparse.

The case where Ω = I is representative of many practical sources of noise. For exam-

ple, there may be short bursts of high noise, or certain measurements may be invalid

because of defective hardware or spikes in the power supply. When measurements are

sent over a network, some measurements may be lost altogether, or in a sensor net-

work, malfunctioning sensors may regularly transmit corrupted measurements while

the other sensors do not. In these cases the noise is sparse in the canonical basis.

In other settings, the measurement noise may be sparse or compressible when repre-

sented in some transform basis. For example, the measurements could be corrupted

with 60Hz hum,2 in which case the noise is sparse in the Fourier basis. Similarly,

measurement noise from a DC bias that changes abruptly would be piecewise-smooth

and thus sparse in a wavelet basis.

In these cases, ‖e‖2 may be extremely large, and thus the resulting bound C0‖e‖2

on the reconstruction error will also be large. However, one can hope to do much

better. To see why, suppose that the measurement noise is sparse in the basis I

so that only a few of the measurements are corrupted with large errors and that

the remaining measurements are noise-free. Standard recovery algorithms will return

a signal estimate x̂ that satisfies only ‖x̂ − x‖2 ≤ C0‖e‖2. However, if we knew

which measurements were corrupted, then we could simply ignore them. If Φ is

generated randomly with M sufficiently large, and if the locations of the corrupted

2In some regions hum consists of a 50Hz sinusoid (and its harmonics).
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measurements were known a priori, then the signal could be reconstructed exactly

by using only the noiseless measurements [123]. The challenge is that it is typically

not possible to know exactly which measurements have been corrupted.

8.2 Justice Pursuit

Our goal is to design an algorithm that will recover both the signal and noise vec-

tors by leveraging their sparsity. Towards this end, suppose that we acquire measure-

ments of the form in (8.1) and that x ∈ ΣK and e ∈ Σκ. Note that the measurements

can be expressed in terms of an M × (N + L) matrix multiplied by a (K + κ)-sparse

vector:

Φx+ Ωe = [Φ Ω]

 x

e

 . (8.2)

We now introduce our reconstruction program, Justice Pursuit (JP):

û = arg min
u
‖u‖1 subject to [Φ Ω]u = y, (8.3)

where û is an intermediate (N +L)× 1 recovery vector. The signal estimate x̂ is ob-

tained by selecting the first N elements of û, i.e., x̂i = ûi, i = 1, . . . , N . Furthermore,

an estimate of the noise vector ê can be obtained by selecting the last L elements of

û, i.e., êi = ûi+N , i = 1, . . . , L. Note that one can also adapt any of the iterative

algorithms from Sections 2.4.2 and 2.4.3 by simply replacing Φ with [Φ Ω].

JP is essentially identical to a program proposed independently in [124, 125]. Note,

however, that in [124, 125] the authors consider only Φ that are composed of a set

of highly correlated training vectors and do not consider this program within the

more traditional context of CS. Indeed, due to our differing assumptions on Φ, we

can demonstrate stronger, non-asymptotic guarantees on the recovery of x and e

provided by JP. The sparse noise model has also been considered in the context of
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CS in [126]; however the authors use a probabilistic approach for the analysis, a

specialized measurement scheme, and propose a non-convex program with non-linear

constraints for signal recovery, resulting in substantial differences from the results we

present below. Note also that while [77] also considers the use of `1-minimization

to mitigate sparse noise, this is in the context of error correction coding. In this

framework the signal to be encoded is not necessarily sparse and M > N , resulting

in a substantially different approach.

While JP is relatively intuitive, it is not clear that it will necessarily work. In

particular, in order to analyze JP using standard methods, we must show that the

matrix [Φ Ω] satisfies the RIP. We now demonstrate that for any choice of Ω, if we

draw the entries of Φ according to a sub-Gaussian distribution as in Chapter 4, then

with high probability [Φ Ω] will satisfy the RIP for any Ω. To do so, we use several

results from Chapter 4 to establish the following lemma, which demonstrates that for

any u, if we draw Φ at random, then ‖[Φ Ω]u‖2 is concentrated around ‖u‖2.

Lemma 8.1. Suppose that Φ is an M ×M matrix whose entries φij are i.i.d. with

φij ∼ SSub(1/M) and let Ω be an M ×L matrix with orthonormal columns. Further-

more, let u ∈ RN+L be an arbitrary vector with the first N entries denoted by x and

the last L entries denoted by e. Then for any ε > 0, and any u ∈ RN+L,

E
(
‖[Φ Ω]u‖2

2

)
= ‖u‖2

2 (8.4)

and

P
(∣∣‖[Φ Ω]u‖2

2 − ‖u‖2
2

∣∣ ≥ ε‖u‖2
2

)
≤ 4e−Mε2/32. (8.5)

Proof. We first note that since [Φ Ω]u = Φx+ Ωe,

‖[Φ Ω]u‖2
2 = ‖Φx+ Ωe‖2

2

= (Φx+ Ωe)T (Φx+ Ωe)
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= xTΦTΦx+ 2eTΩTΦx+ eTΩTΩe

= ‖Φx‖2
2 + 2eTΩTΦx+ ‖e‖2

2. (8.6)

From Corollary 4.2 we have that E (‖Φx‖2
2) = ‖x‖2

2. Furthermore, using Lemma 4.2

it is straightforward to show that 2eTΩTΦx ∼ SSub (4‖x‖2
2‖Ωe‖2

2/M), since the ele-

ments of Φx are strictly sub-Gaussian variables with variance ‖x‖2
2/M . Thus, from

Lemma 4.1 we have that E
(
2eTΩTΦx

)
= 0. Hence, from (8.6) we obtain

E
(
‖[Φ Ω]u‖2

2

)
= ‖x‖2

2 + ‖e‖2
2,

and since ‖u‖2
2 = ‖x‖2

2 + ‖e‖2
2, this establishes (8.4).

We now turn to (8.5). From Corollary 4.2

P
(∣∣‖Y ‖2

2 − ‖x‖2
2

∣∣ ≥ δ‖x‖2
2

)
≤ 2 exp

(
−Mδ2

C∗

)
. (8.7)

As noted above, 2eTΩTΦx ∼ SSub (4‖x‖2
2‖Ωe‖2

2/M). Note that since the columns of

Ω are orthonormal, ‖Ωe‖2
2 = ‖e‖2

2. Hence, from Theorem 4.1 we have that

P
(∣∣2eTΩTΦx

∣∣ ≥ δ‖x‖2‖e‖2

)
≤ 2e−Mδ2/8. (8.8)

Thus, since C∗ ≈ 6.52 < 8, we can combine (8.7) and (8.8) to obtain that with

probability at least 1− 4e−Mδ2/8 we have that both

(1− δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2 (8.9)

and

−δ‖x‖2‖e‖2 ≤ 2eTΩTΦx ≤ δ‖x‖2‖e‖2. (8.10)
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Using (8.6), we can combine (8.9) and (8.10) to obtain

‖[Φ Ω]u‖2
2 ≤ (1 + δ)‖x‖2

2 + δ‖x‖2‖e‖2 + ‖e‖2
2

≤ (1 + δ)
(
‖x‖2

2 + ‖e‖2
2

)
+ δ‖x‖2‖e‖2

≤ (1 + δ)‖u‖2
2 + δ‖u‖2

2

= (1 + 2δ)‖u‖2
2,

where the last inequality follows from the fact that ‖x‖2‖e‖2 ≤ ‖u‖2‖u‖2. Similarly,

we also have that

‖[Φ Ω]u‖2
2 ≥ (1− 2δ)‖u‖2

2.

By substituting ε = δ/2, this establishes (8.5).

Using Lemma 8.1, we now demonstrate that the matrix [Φ Ω] satisfies the RIP pro-

vided that M is sufficiently large. This theorem follows immediately from Lemma 8.1

by using a proof identical to that of Theorem 4.3, so we omit the proof for the sake

of brevity.

Theorem 8.1. Fix δ ∈ (0, 1). Let Φ be an M × N random matrix whose entries

φij are i.i.d. with φij ∼ SSub(1/M) and let Ω be an M × L matrix with orthonormal

columns. If

M ≥ C1(K + κ) log

(
N + L

K + κ

)
, (8.11)

then [Φ Ω] satisfies the RIP of order (K + κ) with the prescribed δ with probability

exceeding 1− 4e−C2M , where C1 is arbitrary and C2 = δ2/64− log(42e/δ)/C1.

Theorem 8.1 implies that when both x and e are sparse, JP recovers both x

and e exactly. Thus, even if ‖e‖2 is unbounded, in this setting JP achieves optimal

performance. To summarize, the hallmarks of JP include:

1. exact recovery of the sparse signal x;
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2. exact recovery of the sparse noise term e;

3. blindness to the locations and size of the measurement errors — thus, the cor-

rupted measurements could be adversarially selected and the noise on the cor-

rupted measurements can be arbitrarily large;

4. no user-defined parameters;

5. standard CS recovery algorithm implementations can be trivially modified, i.e.,

justified, to perform JP, so that optimized routines can be easily adapted to this

setting.

In the case where e contains additional sources of noise that are not sparse, e.g.,

AWGN or quantization error in addition to hum, but has norm bounded by ε, we

propose an algorithm we dub Justice Pursuit De-Noising (JPDN):

û = arg min
u
‖u‖1 s.t. ‖[Φ Ω]u− y‖2 < ε. (8.12)

The performance guarantees of JPDN are analogous to those for BPDN. Specifically,

from Theorem 3.2 we have that provided [Φ Ω] satisfies the RIP of order K + κ with

constant δ sufficiently small, we have

‖û− u‖2 ≤ C1
σK+κ(u)1√
K + κ

. (8.13)

Note that we trivially have that ‖x̂− x‖2 ≤ ‖û− u‖2, and since one possible K + κ-

sparse approximation to u consists of taking the K largest coefficients of x and the κ

largest coefficients of e, we also have that σK+κ(u)1 ≤ σK(x)1 + σκ(e)1. Thus, from

(8.13) we also have

‖x̂− x‖2 ≤ C1
σK(x)1 + σκ(e)1√

K + κ
.

This guarantees a degree of robustness to non-sparse noise or signals.
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Figure 8.1: Comparison of average reconstruction error ‖x− x̂‖2 between JP and BPDN
for noise norms ‖e‖2 = 0.01, 0.2, and 0.3. All trials used parameters N = 2048, K = 10,
and κ = 10. This plot demonstrates that while BPDN never achieves exact reconstruction,
JP does.

8.3 Simulations

8.3.1 Average performance comparison

In Figures 8.1 and 8.2, we compare the average reconstruction error of JP (solid

lines) against the average error of BPDN (dashed lines). We perform two experiments,

each with parameters N = 2048, K = 10, and ‖x‖2 = 1, with M/N ∈ [0.1, 0.4], and

record the average error ‖x− x̂‖2 over 100 trials.

In the first experiment, depicted in Figure 8.1, we fix ‖e‖0 = κ = 10 and vary ‖e‖2.

We observe that the reconstruction error for BPDN does not decay to zero no matter

how large we set M . Most representative of this is the ‖e‖2 = 0.01 case. As M/N

increases, this line reaches a minimum value greater than zero and does not decay

further. In contrast, JP reaches exact recovery in all tests. In the second experiment,

depicted in Figure 8.2, we fix ‖e‖2 = 0.1 and vary κ. Again, the performance of BPDN

does not decay to zero, and furthermore, the performance does not vary with κ on
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Figure 8.2: Comparison of average reconstruction error ‖x− x̂‖2 between JP and BPDN
for κ = 10, 40, and 70. All trials used parameters N = 2048, K = 10, and ‖e‖2 = 0.1.
This plot demonstrates that JP performs similarly to BPDN until M is large enough to
reconstruct κ noise entries.

average. As expected the error of JP goes to zero and requires more measurements

to do so as κ increases.

8.3.2 Reconstruction with hum

In this experiment we study the reconstruction performance from measurements

corrupted by hum, meaning that we add a 60Hz sinusoid to the measurements. We

use a 256 × 256 pixel test image that is compressible in the wavelet domain, set the

measurement ratio to M/N = 0.2, and set the measurement signal-to-noise ratio

(SNR) to 9.3dB, where measurement SNR in dB is defined as 10 log10(‖Φx‖2
2/‖e‖2

2).

We recover using BPDN with ε = ‖e‖2 and using JP with the Fourier basis for Ω.

Note that rather than choosing the entire Fourier basis, a matrix containing the 60Hz

tone and its harmonics can be chosen to reduce the number of required measurements.

Figure 8.3(a) depicts the reconstruction from BPDN and Figure 8.3(b) depicts the

reconstruction from JP. Both images contain compression artifacts, such as “ringing,”
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(a) (b)

Figure 8.3: Reconstruction of an image from CS measurements that have been distorted
by an additive 60Hz sinusoid (hum). The experimental parameters are M/N = 0.2 and
measurement SNR = 9.3dB. (a) Reconstruction using BPDN. (b) Reconstruction using JP.
Spurious artifacts due to noise are present in the image in (a) but not in (b). Significant
edge detail is lost in (a) but recovered in (b).

since the signal is not strictly sparse. However, the BPDN reconstruction contains

spurious artifacts, due not to compression but to noise, while the JP reconstruction

does not. Furthermore, significant edge detail is lost in the BPDN reconstruction.

8.3.3 Measurement denoising

In this experiment we use our algorithm to denoise measurements y that have

been acquired by the single-pixel camera [56]. The image dimensions are 256 × 256

pixels and M/N = 0.1. The denoising procedure is as follows. First we reconstruct

the image using JP with the Fourier basis for Ω. Second, because the measurement

noise is not strictly sparse, we select the 15 largest terms from ê, denoted as ê
′
, and

subtract their contribution from the original measurements, i.e.,

y′ = y − Ωê′.
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(a) (b)

(c) (d)

Figure 8.4: Reconstruction from CS camera data. (a) Reconstruction from CS camera
measurements. (b) Reconstruction from denoised CS camera measurements. (c) and (d)
depict zoomed sections of (a) and (b), respectively. Noise artifacts are removed without
further smoothing of the underlying image.

Third, reconstruction from y′ is performed with BPDN using the parameter ε = 0.3.

To compare, we also reconstruct the image from the original measurements y using

BPDN with the same ε. In general, this procedure can be performed iteratively,

selecting several spikes from ê at each iteration and subtracting their contribution

from the measurements.

Figure 8.4(a) depicts the reconstruction from y and Figure 8.4(b) depicts the re-

construction from y′, and Figures 8.4(c) and 8.4(d) show a zoomed section of each,

respectively. The reconstruction from the original measurements contains signifi-

cantly more spurious artifacts, while the reconstruction from denoised measurements

removes these artifacts without further smoothing of the underlying image.



121

There are many topics that have not been fully explored in this section. For in-

stance, the noise could be compressible rather than strictly sparse, or could consist of

low energy noise on all measurements in addition to the sparse noise. For example,

measurements may be subject to both shot noise and quantization errors simulta-

neously. Additionally, models can be employed to exploit additional noise structure

and reduce the number of required measurements, or recover the signal with higher

accuracy. Finally, the performance of JPDN or adaptations of greedy or iterative

methods to this setting remains a topic of ongoing work.

8.4 Justice and Democracy

The moral of the preceding sections is that random measurements are just, mean-

ing that they are robust to a small number of arbitrary corruptions. In this section,

we investigate a closely related property of random measurements. Specifically, we

show that random matrices are democratic, which has historically been taken to mean

that each measurement carries roughly the same amount of information about the

signal. We adopt a more precise definition, and further demonstrate that random

measurements are robust to the loss of a small number of arbitrary measurements by

building on the Lemma 8.1. In addition, we draw connections to oversampling and

demonstrate stability from the loss of significantly more measurements.

8.4.1 Democracy

While it is not usually rigorously defined in the literature, democracy is usually

taken to mean that each measurement contributes a similar amount of information

about the signal x to the compressed representation y [127–129].3 Others have de-

3The original introduction of this term was with respect to quantization [127, 128], i.e., a demo-
cratic quantizer would ensure that each bit is given “equal weight.” As the CS framework developed,
it became empirically clear that CS systems exhibited this property with respect to compression [129].
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scribed democracy to mean that each measurement is equally important (or unimpor-

tant) [130]. Despite the fact that democracy is so frequently touted as an advantage

of random measurements, it has received little analytical attention in the CS con-

text. Perhaps more surprisingly, the property has not been explicitly exploited in

applications until recently [123].

The fact that random measurements are democratic seems intuitive; when using

random measurements, each measurement is a randomly weighted sum of a large

fraction (or all) of the entries of x, and since the weights are chosen independently

at random, no preference is given to any particular entries. More concretely, suppose

that the measurements y1, y2, . . . , yM are i.i.d. according to some distribution fY , as

is the case for Φ with i.i.d. entries. Now suppose that we select M̃ < M of the yi

at random (or according to some procedure that is independent of y). Then clearly,

we are left with a length-M̃ measurement vector ỹ such that each ỹi ∼ fY . Stated

another way, if we set D = M − M̃ , then there is no difference between collecting

M̃ measurements and collecting M measurements and deleting D of them, provided

that this deletion is done independently of the actual values of y.

However, following this line of reasoning will ultimately lead to a rather weak

definition of democracy. To see this, consider the case where the measurements are

deleted by an adversary. By adaptively deleting the entries of y one can change the

distribution of ỹ. For example, the adversary can delete the D largest elements of y,

thereby skewing the distribution of ỹ. In many cases, especially if the same matrix Φ

will be used repeatedly with different measurements being deleted each time, it would

be far better to know that any M̃ measurements will be sufficient to reconstruct the

signal. This is a significantly stronger requirement.
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8.4.2 Democracy and the RIP

The RIP also provides us with a way to quantify our notion of democracy in

the deterministic setting of CS. To do so, we first formally define democracy. In

our definition, we assume that Φ is an M × N matrix and in the case where Γ ⊂

{1, 2, , . . . ,M} we use the notation ΦΓ to denote the |Γ| × N matrix obtained by

selecting the rows of Φ indexed by Γ.

Definition 8.1. Let Φ be and M × N matrix, and let M̃ ≤ M be given. We say

that Φ is (M̃,K, δ)-democratic if for all Γ such that |Γ| ≥ M̃ the matrix ΦΓ satisfies

the RIP of order K with constant δ.

We now show that sub-Gaussian matrices satisfy this property with high proba-

bility.

Theorem 8.2. Fix δ ∈ (0, 1). Let Φ be an M ×N random matrix whose entries φij

are i.i.d. with φij ∼ SSub(1/M). Let M̃ ≤M be given, and define D = M − M̃ . If

M = C1(K +D) log

(
N +M

K +D

)
, (8.14)

then with probability exceeding 1 − 4e−C2M we have that Φ is (M̃,K, δ/(1 − δ))-

democratic, where C1 is arbitrary and C2 = δ2/64− log(42e/δ)/C1.

Proof. Our proof consists of two main steps. We begin by defining the M × (N +M)

matrix Φ̃ = [I Φ] formed by appending Φ to the M×M identity matrix. Theorem 8.1

demonstrates that under the assumptions in the theorem statement, with probability

exceeding 1− 4e−C2M we have that Φ̃ satisfies the RIP of order K +D with constant

δ. The second step is to use this fact to show that all possible M̃ ×N submatrices of

Φ satisfy the RIP of order K with constant δ/(1− δ).

Towards this end, we let Γ ⊂ {1, 2, . . . ,M} be an arbitrary subset of rows such
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that |Γ| ≥ M̃ . Define Λ = {1, 2, . . . ,M} \ Γ and note that |Λ| = D. Recall that

PΛ = Φ̃ΛΦ̃†Λ, (8.15)

defines the orthogonal projection onto R(Φ̃Λ), i.e., the range, or column space, of Φ̃Λ.

Furthermore, we define

P⊥Λ , I − PΛ, (8.16)

as the orthogonal projection onto the orthogonal complement of R(Φ̃Λ). In words,

this projector annihilates the columns of Φ̃ corresponding to the index set Λ. Now,

note that Λ ⊂ {1, 2, . . . ,M}, so Φ̃Λ = IΛ. Thus,

PΛ = IΛI
†
Λ = IΛ(ITΛ IΛ)−1ITΛ = IΛI

T
Λ = I(Λ),

where we use I(Λ) to denote the M ×M matrix with all zeros except for ones on

the diagonal entries corresponding to the columns indexed by Λ. (We distinguish the

M ×M matrix I(Λ) from the M × D matrix IΛ — in the former case we replace

columns not indexed by Λ with zero columns, while in the latter we remove these

columns to form a smaller matrix.) Similarly, we have

P⊥Λ = I − PΛ = I(Γ).

Thus, we observe that the matrix P⊥Λ Φ̃ = I(Γ)Φ̃ is simply the matrix Φ̃ with zeros

replacing all entries on any row i such that i /∈ Γ, i.e., (P⊥Λ Φ̃)Γ = Φ̃Γ and (P⊥Λ Φ̃)Λ = 0.

Furthermore, Lemma 6.2 states that for Φ̃ satisfying the RIP of order K + D with

constant δ, we have that

(
1− δ

1− δ

)
‖u‖2

2 ≤ ‖P⊥Λ Φ̃u‖2
2 ≤ (1 + δ)‖u‖2

2, (8.17)
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holds for all u ∈ RN+M such that ‖u‖0 = K + D − |Λ| = K and supp(u) ∩ Λ = ∅.

Equivalently, letting Λc = {1, 2, . . . , N + M} \ Λ, this result states that (I(Γ)Φ̃)Λc

satisfies the RIP of order K with constant δ/(1− δ). To complete the proof, we note

that if (I(Γ)Φ̃)Λc satisfies the RIP of order K with constant δ/(1−δ), then we trivially

have that I(Γ)Φ also has the RIP of order at least K with constant δ/(1− δ), since

I(Γ)Φ is just a submatrix of (I(Γ)Φ̃)Λc . Since ‖I(Γ)Φx‖2 = ‖ΦΓx‖2, this establishes

the theorem.

8.4.3 Robustness and stability

Observe that we require O(D log(N)) additional measurements to ensure that Φ

is (M̃,K, δ)-democratic compared to the number of measurements required to simply

ensure that Φ satisfies the RIP of order K. This seems intuitive; if we wish to be

robust to the loss of any D measurements while retaining the RIP of order K, then we

should expect to take at least D additional measurements. This is not unique to the

CS framework. For instance, by oversampling, i.e., sampling faster than the minimum

required Nyquist rate, uniform sampling systems can also improve robustness with

respect to the loss of measurements. Reconstruction can be performed in principle on

the remaining non-uniform grid, as long as the remaining samples satisfy the Nyquist

range on average [131].

However, linear reconstruction in such cases is known to be unstable. Furthermore

the linear reconstruction kernels are difficult to compute. Under certain conditions

stable non-linear reconstruction is possible, although this poses further requirements

on the subset of samples that can be lost and the computation can be expensive [132].

For example, deleting contiguous groups of measurements can be a challenge for the

stability of the reconstruction algorithms. Instead, the democratic property of ran-

dom measurements allows for the deletion of an arbitrary subset D of the measure-

ments without compromising the reconstruction stability, independent of the way
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these measurements are chosen.

In some applications, this difference may have significant impact. For example,

in finite dynamic range quantizers, the measurements saturate when their magnitude

exceeds some level. Thus, when uniformly sampling with a low saturation level, if

one sample saturates, then the likelihood that any of the neighboring samples will

saturate is high, and significant oversampling may be required to ensure any benefit.

However, in CS, if many adjacent measurements were to saturate, then for only a

slight increase in the number of measurements we can mitigate this kind of error by

simply rejecting the saturated measurements; the fact that Φ is democratic ensures

that this strategy will be effective [123].

Theorem 8.2 further guarantees graceful degradation due to loss of samples. Specif-

ically, the theorem implies that reconstruction from any subset of CS measurements

is stable to the loss of a potentially larger number of measurements than anticipated.

To see this, suppose that an M ×N matrix Φ is (M −D,K, δ)-democratic, but con-

sider the situation where D+ D̃ measurements are deleted. It is clear from the proof

of Theorem 8.2 that if D̃ < K, then the resulting matrix ΦΓ will satisfy the RIP of

order K− D̃ with constant δ. Thus, if we define K̃ = (K− D̃)/2, then as an example

we have that from Theorem 3.2 the reconstruction error of BPDN in this setting is

then bounded by

‖x− x̂‖2 ≤ C3

‖x− xK̃‖1√
K̃

, (8.18)

where C3 is an absolute constant depending on Φ that can be bounded using the

constants derived in Theorem 8.2. Thus, if D̃ is small then the additional error

caused by deleting too many measurements will also be relatively small. To our

knowledge, there is simply no analog to this kind of graceful degradation result for

uniform sampling with linear reconstruction. When the number of deleted samples
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exceeds D, there are no guarantees as to the accuracy of the reconstruction.

8.4.4 Simulations

As discussed previously, the democracy property is a stronger condition than the

RIP. To demonstrate this, we perform a numerical simulation which illustrates this

point. Specifically, we would like to compare the case where the measurements are

deleted at random versus the case where the deleted measurements are selected by

an adversary. Ideally, we would like to know whether the resulting matrices satisfy

the RIP. Of course, this experiment is impossible to perform for two reasons: first,

determining if a matrix satisfies the RIP is computationally intractable, as it would

require checking all possible K-dimensional sub-matrices of ΦΓ. Moreover, in the

adversarial setting one would also have to search for the worst possible Γ as well,

which is impossible for the same reason. Thus, we instead perform a far simpler

experiment, which serves as a very rough proxy to the experiment we would like to

perform.

The experiment proceeds over 100 trials as follows. We fix the parameters N =

2048 and K = 13 and vary M in the range (0, 380). In each trial we draw a new

matrix Φ with φij ∼ N (0, 1/M) and a new signal with K nonzero coefficients, also

drawn from a Gaussian distribution, and then the signal is normalized ‖x‖2 = 1.

Over each set of trials we estimate two quantities:

1. the maximum D such that we achieve exact reconstruction for a randomly

selected (M −D)×N submatrix of Φ on each of the 100 trials;

2. the maximum D such that we achieve exact reconstruction for R = 300 ran-

domly selected (M −D)×N submatrices of Φ on each of the 100 trials..

Ideally, the second case should consider all (M − D) × N submatrices of Φ rather

than just 300 submatrices, but as this is not possible (for reasons discussed above) we
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Figure 8.5: Maximum number of measurements that can be deleted Dmax vs. number of
measurements M for (a) exact recovery of one (M −D)×N submatrix of Φ and (b) exact
recovery of R = 300 (M −D)×N submatrices of Φ.

simply perform a random sampling of the space of possible submatrices. Note also

that exact recovery on one signal is also not proof that the matrix satisfies the RIP,

although failure is proof that the matrix does not.

The results of this experiment are depicted in Figure 8.5. The circles denote data

points with the empty circles corresponding to the random selection experiment and

the solid circles corresponding to the democracy experiment. The lines denote the

best linear fit for each data set where D > 0.

The maximum D corresponding to the random selection experiment grows linearly

in M (with coefficient 1) once the minimum number of measurements required for

RIP, denoted by M ′, is reached. This is because beyond this point at most D =

M −M ′ measurements can be discarded. As demonstrated by the plot, M ′ ≈ 90 for

this experiment. For the democracy experiment M ′ ≈ 150, larger than for the RIP

experiment. Furthermore, the maximum D for democracy grows more slowly than

for the random selection case, which indicates that to be robust to the loss of any D

measurements, CD additional measurements, with C > 1, are actually necessary.



Part IV

Sparse Signal Processing



Chapter 9

Compressive Detection,

Classification, and Estimation

Despite the intense focus of the CS community on the problem of signal recovery,

it is not actually necessary in many signal processing applications. In fact, most

of DSP is actually concerned with solving inference problems, i.e., extracting only

certain information from measurements. For example, we might aim to detect the

presence of a signal of interest, classify among a set of possible candidate signals,

estimate some function of the signal, or filter out a signal that is not of interest

before further processing. While one could always attempt to recover the full signal

from the compressive measurements and then solve such problems using traditional

DSP techniques, this approach is typically suboptimal in terms of both accuracy and

efficiency.

This thesis takes some initial steps towards a general framework for what we call

compressive signal processing (CSP), an alternative approach in which signal pro-

cessing problems are solved directly in the compressive measurement domain without

first resorting to a full-scale signal reconstruction. We begin in this chapter1 with

1This work was done in collaboration with Richard G. Baraniuk, Petros T. Boufounos, and
Michael B. Wakin [133, 134].
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an analysis of three fundamental signal processing problems: detection, classification,

and estimation. In the case of signal detection and classification from random mea-

surements in the presence of Gaussian noise, we derive the optimal detector/classifier

and analyze its performance. We show that in the high SNR regime we can reliably

detect/classify with far fewer measurements than are required for recovery. We also

propose a simple and efficient approach to the estimation of linear functions of the

signal from random measurements. We argue that in all of these settings, we can

exploit sparsity and random measurements to enable the design of efficient, universal

acquisition hardware. While these choices do not exhaust the set of canonical signal

processing operations, we believe that they provide a strong initial foundation for

CSP.

9.1 Compressive Signal Processing

9.1.1 Motivation

In what settings is it actually beneficial to take randomized, compressive mea-

surements of a signal in order to solve an inference problem? One may argue that

prior knowledge of the signal to be acquired or of the inference task to be solved

could lead to a customized sensing protocol that very efficiently acquires the relevant

information. For example, suppose we wish to acquire a signal x ∈ ΣK or x ∈ Ψ(ΣK)

for some known basis Ψ. If we knew in advance which elements were nonzero, then

the most efficient and direct measurement scheme would simply project the signal

into the appropriate K-dimensional subspace. As a second example, suppose we wish

to detect a known signal. If we knew in advance the signal template, then the op-

timal and most efficient measurement scheme would simply involve a receiving filter

explicitly matched to the candidate signal.

Clearly, in cases where strong a priori information is available, customized sensing
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protocols may be appropriate. However, a key objective of this thesis is to illustrate

the agnostic and universal nature of random compressive measurements as a compact

signal representation. These features enable the design of exceptionally efficient and

flexible compressive sensing hardware that can be used for the acquisition of a variety

of signal classes and applied to a variety of inference tasks.

As has been demonstrated in Part II, random measurements can be used to acquire

any sparse signal without requiring advance knowledge of the locations of the nonzero

coefficients. Thus, compressive measurements are agnostic in the sense that they

capture the relevant information for the entire class ΣK . We extend this concept to the

CSP framework and demonstrate that it is possible to design agnostic measurement

schemes that preserve the necessary structure of large signal classes in a variety of

signal processing settings.

Furthermore, we observe that one can select a randomized measurement scheme

without any prior knowledge of the signal class. For instance, in conventional CS it

is not necessary to know the transform basis in which the signal has a sparse rep-

resentation when acquiring the measurements. The only dependence is between the

complexity of the signal class (e.g., the sparsity level of the signal) and the number of

random measurements that must be acquired. Thus, random compressive measure-

ments are universal in the sense that if one designs a measurement scheme at random,

then with high probability it will preserve the structure of the signal class of interest,

and thus explicit a priori knowledge of the signal class is unnecessary. We broaden

this result and demonstrate that random measurements can universally capture the

information relevant for many CSP applications without any prior knowledge of either

the signal class or the ultimate signal processing task. In such cases, the requisite

number of measurements scales efficiently with both the complexity of the signal and

the complexity of the task to be performed.

It follows that, in contrast to the task-specific hardware used in many classical
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Figure 9.1: Example CSP application: Wideband signal monitoring.

acquisition systems, hardware designed to use a compressive measurement protocol

can be extremely flexible. Returning to the binary detection scenario, for example,

suppose that the signal template is unknown at the time of acquisition, or that one has

a large number of candidate templates. Then what information should be collected

at the sensor? A complete set of Nyquist samples would suffice, or a bank of matched

filters could be employed. From a CSP standpoint, however, the solution is more

elegant: one need only collect a small number of compressive measurements from

which many candidate signals can be tested, many signal models can be posited, and

many other inference tasks can be solved. What one loses in performance compared to

a tailor-made matched filter, one may gain in simplicity and in the ability to adapt to

future information about the problem at hand. In this sense, CSP impacts sensors in

a similar manner as DSP impacted analog signal processing: expensive and inflexible

analog components can be replaced by a universal, flexible, and programmable digital

system.

9.1.2 Stylized application: Wideband signal monitoring

A stylized application to demonstrate the potential and applicability of the CSP

framework is summarized in Figure 9.1. The figure schematically presents a wideband

signal monitoring and processing system that receives signals from a variety of sources,

including various television, radio, and cell-phone transmissions, radar signals, and
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satellite communication signals. The extremely wide bandwidth monitored by such

a system makes CS a natural approach for efficient signal acquisition [55].

In many cases, the system user might only be interested in extracting very small

amounts of information from each signal. This can be efficiently performed using

the tools we describe in the subsequent sections. For example, the user might be

interested in detecting and classifying some of the signal sources, and in estimating

some parameters, such as the location, of others. Full-scale signal recovery might be

required for only a few of the signals in the monitored bandwidth. The detection,

classification, and estimation tools developed below enable the system to perform

these tasks much more efficiently in the compressive domain.

9.1.3 Context

There have been a number of related thrusts involving detection and classification

using random measurements in a variety of settings. For example, in [61] sparsity

is leveraged to perform classification with very few random measurements, while

in [135, 136] random measurements are exploited to perform manifold-based image

classification. In [124], small numbers of random measurements have also been noted

as capturing sufficient information to allow robust face recognition. However, the most

directly relevant work has been the discussions of detection in [137] and classification

in [138]. We will contrast our results to those of [137, 138] below.

In this chapter we consider a variety of estimation and decision tasks. The data

streaming community, which is concerned with efficient algorithms for processing

large streams of data, has examined many similar problems over the past several

years. The main differences with our work include: (i) data stream algorithms are

typically designed to operate in noise-free environments on man-made digital signals,

whereas we view compressive measurements as a sensing scheme that will operate

in an inherently noisy environment; (ii) data stream algorithms typically provide
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probabilistic guarantees, while we focus on providing deterministic guarantees; and

(iii) data stream algorithms tend to tailor the measurement scheme to the task at

hand, while we demonstrate that it is often possible to use the same measurements

for a variety of signal processing tasks.

Finally, we note that in the remainder of this chapter, we will use the notation

introduced in Section 4.4. This will allow us to state our results in a general manner

that includes the sparse signal model, but also other signal models as described in

Section 4.4.

9.2 Detection with Compressive Measurements

9.2.1 Problem setup and applications

We begin by examining the simplest of detection problems. We aim to distinguish

between two hypotheses:

H0 : y = Φn

H1 : y = Φ(s+ n)

where s ∈ RN is a known signal, n ∼ N (0, σ2IN) is i.i.d. Gaussian noise, and Φ is a

known (fixed) measurement matrix. If s is known at the time of the design of Φ, then

it is easy to show that the optimal design would be to set Φ = sT , which is just the

matched filter. However, as mentioned in Section 9.1, we are often interested in uni-

versal or agnostic Φ. As an example, if we design hardware to implement the matched

filter for a particular s, then we are very limited in what other signal processing tasks

that hardware can perform. Even if we are only interested in detection, it is still

possible that the signal s that we wish to detect may evolve over time. Thus, we will

consider instead the case where Φ is designed without knowledge of s but is instead a
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random matrix. From the results of Section 4.4, this will imply performance bounds

that depend on how many measurements are acquired and the class S of possible s

that we wish to detect.

9.2.2 Theory

To set notation, let

PF =P(H1 chosen when H0 true) and

PD =P(H1 chosen when H1 true)

denote the false alarm rate and the detection rate, respectively. The Neyman-Pearson

(NP) detector is the decision rule that maximizes PD subject to the constraint that

PF ≤ α. In order to derive the NP detector, we first observe that for our hypotheses,

H0 and H1, we have the probability density functions2

f0(y) =
exp

(
−1

2
yT (σ2ΦΦT )−1y

)
det (σ2ΦΦT )

1
2 (2π)

M
2

and

f1(y) =
exp

(
−1

2
(y − Φs)T (σ2ΦΦT )−1(y − Φs)

)
det (σ2ΦΦT )

1
2 (2π)

M
2

,

where det denotes the matrix determinant. It is easy to show (see [139, 140], for

example) that the NP-optimal decision rule is to compare the ratio f1(y)/f0(y) to a

threshold η, i.e, the likelihood ratio test:

Λ(y) =
f1(y)

f0(y)

H1

≷
H0

η

2This formulation assumes that rank(Φ) = M so that ΦΦT is invertible. If the entries of Φ are
generated according to a continuous distribution and M < N , then this will be true with probability
1. This will also be true with high probability for discrete distributions provided that M � N . In
the event that Φ is not full rank, appropriate adjustments can be made.
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where η is chosen such that

PF =

∫
Λ(y)>η

f0(y) dy = α.

By taking a logarithm we obtain an equivalent test that simplifies to

yT (ΦΦT )−1Φs
H1

≷
H0

σ2 log(η) +
1

2
sTΦT (ΦΦT )−1Φs := γ.

We now define the compressive detector:

t := yT (ΦΦT )−1Φs. (9.1)

It can be shown that t is a sufficient statistic for our detection problem, and thus t

contains all of the information relevant for distinguishing between H0 and H1.

We must now set γ to achieve the desired performance. To simplify notation, we

define

PΦT = ΦT (ΦΦT )−1Φ

as the orthogonal projection operator onto R(ΦT ), i.e., the row space of Φ. Since

PΦT = P T
ΦT and P 2

ΦT = PΦT , we then have that

sTΦT (ΦΦT )−1Φs = ‖PΦT s‖2
2. (9.2)

Using this notation, it is easy to show that

t ∼


N (0, σ2‖PΦT s‖2

2) under H0

N (‖PΦT s‖2
2, σ

2‖PΦT s‖2
2) under H1.
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Thus we have

PF =P (t > γ|H0) = Q

(
γ

σ‖PΦT s‖2

)
PD =P (t > γ|H1) = Q

(
γ − ‖PΦT s‖2

2

σ‖PΦT s‖2

)

where

Q(z) =
1√
2π

∫ ∞
z

exp
(
−u2/2

)
du.

To determine the threshold, we set PF = α, and thus

γ = σ‖PΦT s‖2Q
−1(α),

resulting in

PD(α) = Q
(
Q−1(α)− ‖PΦT s‖2/σ

)
. (9.3)

In general, this performance could be either quite good or quite poor depending

on Φ. In particular, the larger ‖PΦT s‖2 is, then the better the performance. Recalling

that PΦT is the orthogonal projection onto the row space of Φ, we see that ‖PΦT s‖2 is

simply the norm of the component of s that lies in the row space of Φ. This quantity

is clearly at most ‖s‖2, which would yield the same performance as the traditional

matched filter, but it could also be 0 if s lies in the null space of Φ. As we will

see below, however, in the case where Φ is random, we can expect that ‖PΦT s‖2

concentrates around
√
M/N‖s‖2.

Let us now define

SNR := ‖s‖2
2/σ

2. (9.4)

We can bound the performance of the compressive detector as follows.
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Theorem 9.1. Suppose that
√
N/MPΦT provides a δ-stable embedding of (S, {0}).

Then for any s ∈ S, we can detect s with error rate

PD(α) ≤ Q

(
Q−1(α)−

√
1 + δ

√
M

N

√
SNR

)
(9.5)

and

PD(α) ≥ Q

(
Q−1(α)−

√
1− δ

√
M

N

√
SNR

)
. (9.6)

Proof. By our assumption that
√
N/MPΦT provides a δ-stable embedding of (S, {0}),

we know from (4.26) that

√
1− δ‖s‖2 ≤

√
N

M
‖PΦT s‖2 ≤

√
1 + δ‖s‖2. (9.7)

Combining (9.7) with (9.3) and recalling the definition of the SNR from (9.4), the

result follows.

Theorem 9.1 tells us in a precise way how much information we lose by using

random projections rather than the signal samples themselves, not in terms of our

ability to recover the signal, but in terms of our ability to solve a detection problem.

Specifically, for typical values of δ,

PD(α) ≈ Q
(
Q−1(α)−

√
M/N

√
SNR

)
, (9.8)

which increases the miss probability by an amount determined by the SNR and the

ratio M/N . Note that this is essentially the same phenomenon described in Chapter 7

— within the M -dimensional measurement subspace (as mapped to by
√
N/MPΦT ),

we will preserve the norms of the elements in S. Meanwhile, the variance of the

additive noise in this subspace is increased by a factor of N/M . Thus, our SNR

decreases by a factor of M/N . In this case, however, there is a subtle difference in
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that the impact of this decrease in the SNR has a nonlinear effect on PD since it is

passed through the Q function. Thus, in the high SNR regime it is possible to have

M � N while observing only a mild impact on the resulting PD.

In order to more clearly illustrate the behavior of PD(α) as a function of M , we

also establish the following corollary of Theorem 9.1.

Corollary 9.1. Suppose that
√
N/MPΦT provides a δ-stable embedding of (S, {0}).

Then for any s ∈ S, we can detect s with success rate

PD(α) ≥ 1− C2e
−C1M/N , (9.9)

where C1 and C2 are constants depending only on α, δ, and the SNR.

Proof. We begin with the following bound from (13.48) of [141]

Q(z) ≤ e−z
2/2

2
, (9.10)

which allows us to bound PD as follows. Let C1 = (1− δ)SNR/2. Then

PD(α) ≥ Q
(
Q−1(α)−

√
2C1M/N

)
= 1−Q

(√
2C1M/N −Q−1(α)

)
≥ 1− 1

2
e−C1M/N−

√
2C1M/NQ−1(α)+(Q−1(α))2/2

≥ 1− 1

2
e−C1M/N−

√
2C1Q−1(α)+(Q−1(α))2/2.

Thus, if we let

C2 =
1

2
e−Q

−1(α)(Q−1(α)/2−
√

2C1), (9.11)

we obtain the desired result.

Thus, for a fixed SNR and signal length, the detection probability approaches 1
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Figure 9.2: Effect of M on PD(α) predicted by (9.8) (SNR = 20dB).

exponentially fast as we increase the number of measurements.

9.2.3 Simulations and discussion

We first explore how M affects the performance of the compressive detector. As

described above, decreasing M does cause a degradation in performance. However, as

illustrated in Figure 9.2, in certain cases (relatively high SNR; 20 dB in this example)

the compressive detector can perform almost as well as the traditional detector with a

very small fraction of the number of measurements required by traditional detection.

Specifically, in Figure 9.2 we illustrate the receiver operating characteristic (ROC)

curve, i.e., the relationship between PD and PF predicted by (9.8). Observe that as

M increases, the ROC curve approaches the upper-left corner, meaning that we can

achieve very high detection rates while simultaneously keeping the false alarm rate

very low. As M grows we see that we rapidly reach a regime where any additional

increase in M yields only marginal improvements in the tradeoff between PD and PF .

Furthermore, the exponential increase in the detection probability as we take more

measurements is illustrated in Figure 9.3, which plots the performance predicted by
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Figure 9.3: Effect of M on PD predicted by (9.8) at several different SNR levels (α = 0.1).

(9.8) for a range of SNRs with α = 0.1. However, we again note that in practice this

rate can be significantly affected by the SNR, which determines the constants in the

bound of (9.9). These results are consistent with those obtained in [137], which also

established that PD should approach 1 exponentially fast as M is increased.

Finally, we close by noting that for any given instance of Φ, its ROC curve may

be better or worse than that predicted by (9.8). However, with high probability it is

tightly concentrated around the expected performance curve. Figure 9.4 illustrates

this for the case where s is fixed, the SNR is 20dB, Φ has i.i.d. Gaussian entries,

M = 0.05N , and N = 1000. The predicted ROC curve is illustrated along with

curves displaying the best and worst ROC curves obtained over 100 independent

draws of Φ. We see that our performance is never significantly different from what

we expect. Furthermore, we have also observed that these bounds grow significantly

tighter as we increase N ; so for large problems the difference between the predicted

and actual curves will be insignificant.
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Figure 9.4: Concentration of ROC curves for random Φ near the expected ROC curve
(SNR = 20dB, M = 0.05N , N = 1000).

9.3 Classification with Compressive Measurements

9.3.1 Problem setup and applications

We can easily generalize the setting of Section 9.2 to the problem of binary classifi-

cation. Specifically, if we wish to distinguish between Φ(s0 +n) and Φ(s1 +n), then it

is equivalent to be able to distinguish Φ(s0 +n)−Φs0 = Φn and Φ(s1−s0 +n). Thus,

the conclusions for the case of binary classification are identical to those discussed in

Section 9.2.

More generally, suppose that we would like to distinguish between the hypotheses:

H̃i : y = Φ(si + n),

for i = 1, 2, . . . , R, where each si ∈ S is one of our known signals and as before,

n ∼ N (0, σ2IN) is i.i.d. Gaussian noise and Φ is a known M ×N matrix.

It is straightforward to show (see [139, 140], for example), in the case where each

hypothesis is equally likely, that the classifier with minimum probability of error
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selects the H̃i that minimizes

ti := (y − Φsi)
T (ΦΦT )−1(y − Φsi). (9.12)

If the rows of Φ are orthogonal and have equal norm, then this reduces to identifying

which Φsi is closest to y. The (ΦΦT )−1 term arises when the rows of Φ are not

orthogonal because the noise is no longer uncorrelated.

As an alternative illustration of the classifier behavior, let us suppose that y = Φx

for some x ∈ RN . Then, starting with (9.12), we have

ti = (y − Φsi)
T (ΦΦT )−1(y − Φsi)

= (Φx− Φsi)
T (ΦΦT )−1(Φx− Φsi)

= (x− si)TΦT (ΦΦT )−1Φ(x− si)

= ‖PΦTx− PΦT si‖2
2, (9.13)

where (9.13) follows from the same argument as (9.2). Thus, we can equivalently

think of the classifier as simply projecting x and each candidate signal si onto the

row space of Φ and then classifying according to the nearest neighbor in this space.

9.3.2 Theory

While in general it is difficult to find analytical expressions for the probability of

error even in non-compressive classification settings, we can provide a bound for the

performance of the compressive classifier as follows.

Theorem 9.2. Suppose that
√
N/MPΦT provides a δ-stable embedding of (S,S), and

let R = |S|. Let

d = min
i,j
‖si − sj‖2 (9.14)

denote the minimum separation among the si. For some i∗ ∈ {1, 2, . . . , R}, let y =
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Φ(si∗ + n), where n ∼ N (0, σ2IN) is i.i.d. Gaussian noise. Then with probability at

least

1−
(
R− 1

2

)
e−d

2(1−δ)M/(8σ2N), (9.15)

the signal can be correctly classified, i.e.,

i∗ = arg min
i∈{1,2,...,R}

ti. (9.16)

Proof. Let j 6= i∗. We will argue that tj > ti∗ with high probability. From (9.13) we

have that

ti∗ = ‖PΦTn‖2
2

and

tj = ‖PΦT (si∗ − sj + n)‖2
2

= ‖PΦT (si∗ − sj) + PΦTn‖2
2

= ‖τ + PΦTn‖2
2,

where we have defined τ = PΦT (si∗ − sj) to simplify notation. Let us define Pτ =

ττT/‖τ‖2
2 as the orthogonal projection onto the 1-dimensional span of τ , and Pτ⊥ =

(IN − Pτ ). Then we have

ti∗ = ‖PτPΦTn‖2
2 + ‖Pτ⊥PΦTn‖2

2

and

tj = ‖Pτ (τ + PΦTn)‖2
2 + ‖Pτ⊥(τ + PΦTn)‖2

2

= ‖τ + PτPΦTn‖2
2 + ‖Pτ⊥PΦTn‖2

2.
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Thus, tj ≤ ti∗ if and only if

‖τ + PτPΦTn‖2
2 ≤ ‖PτPΦTn‖2

2,

or equivalently, if

∥∥∥∥ τT

‖τ‖2

(τ + PτPΦTn)

∥∥∥∥2

2

≤
∥∥∥∥ τT

‖τ‖2

PτPΦTn

∥∥∥∥2

2

,

or equivalently, if ∣∣∣∣‖τ‖2 +
τT

‖τ‖2

PΦTn

∣∣∣∣ ≤ ∣∣∣∣ τT‖τ‖2

PΦTn

∣∣∣∣ ,
or equivalently, if

τT

‖τ‖2

PΦTn ≤ −‖τ‖2

2
.

The quantity τT

‖τ‖2PΦTn is a scalar, zero-mean Gaussian random variable with

variance

τT

‖τ‖2

PΦT (σ2IN)P T
ΦT

τ

‖τ‖2

=
τTPΦT τσ2

‖τ‖2
2

= σ2.

Because
√
N/MPΦT provides a δ-stable embedding of (S,S), and by our assumption

that ‖si∗ − sj‖2 ≥ d, we have that ‖τ‖2
2 ≥ d2(1− δ)M/N . Thus, using also (9.10), we

have

P(tj ≤ ti∗) = P
(
τT

‖τ‖2

PΦTn ≤ −‖τ‖2

2

)
= Q

(
‖τ‖2

2σ

)
≤ 1

2
e−‖τ‖

2
2/(8σ

2)

≤ 1

2
e−d

2(1−δ)M/(8σ2N).

Finally, because ti∗ is compared to R− 1 other candidates, we use a union bound to

conclude that (9.16) holds with probability exceeding that given in (9.15).
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Figure 9.5: Effect of M on PE (the probability of error of a compressive domain classifier)
for R = 3 signals at several different SNR levels, where SNR = 10 log10(d2/σ2).

9.3.3 Simulations and discussion

In Figure 9.5 we display experimental results for classification among R = 3 test

signals of length N = 1000. The signals s1, s2, and s3 are drawn according to a

Gaussian distribution with mean 0 and variance 1 and then fixed. For each value of

M , a single Gaussian Φ is drawn and then the probability of error PE is computed

by averaging the results over 106 realizations of the noise vector n. The error rates

are very similar in spirit to those for detection (see Figure 9.3). The results agree

with Theorem 9.2, in which we demonstrate that, as was the case for detection, as

M increases the probability of error decays exponentially fast. This also agrees with

the related results of [138].
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9.4 Estimation with Compressive Measurements

9.4.1 Problem setup and applications

While many signal processing problems can be reduced to a detection or classifi-

cation problem, in some cases we cannot reduce our task to selecting among a finite

set of hypotheses. Rather, we might be interested in estimating some function of the

data. In this section we will focus on estimating a linear function of the data from

compressive measurements.

Suppose that we observe y = Φs and wish to estimate 〈`, s〉 from the measure-

ments y, where ` ∈ RN is a fixed test vector. In the case where Φ is a random matrix,

a natural estimator is essentially the same as the compressive detector. Specifically,

suppose we have a set L of |L| linear functions we would like to estimate from y.

Example applications include computing the coefficients of a basis or frame repre-

sentation of the signal, estimating the signal energy in a particular linear subspace,

parametric modeling, and so on. One potential estimator for this scenario, which is

essentially a simple generalization of the compressive detector in (9.1), is given by

N

M
yT (ΦΦT )−1Φ`i, (9.17)

for i = 1, 2, . . . , |L|. While this approach, which we shall refer to as the orthogonalized

estimator, has certain advantages, it is also enlightening to consider an even simpler

estimator, given by

〈y,Φ`i〉 . (9.18)

We shall refer to this approach as the direct estimator since it eliminates the orthog-

onalization step by directly correlating the compressive measurements with Φ`i. We

will provide a more detailed experimental comparison of these two approaches below,

but in the proof of Corollary 9.2 we focus only on the direct estimator.
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9.4.2 Theory

We now provide bounds on the performance of our simple estimator.3 This bound

is a generalization of Lemma 6.1 to the setting of more general stable embeddings.

The proof is omitted as it is essentially identical to that of Lemma 6.1.

Corollary 9.2. Suppose that ` ∈ L and s ∈ S and that Φ is a δ-stable embedding of

(L,S ∪ −S). Then

|〈Φ`,Φs〉 − 〈`, s〉| ≤ δ‖`‖2‖s‖2. (9.19)

One way of interpreting our result is that the angle between two vectors can be

estimated accurately; this is formalized as follows.

Corollary 9.3. Suppose that ` ∈ L and s ∈ S and that Φ is a δ-stable embedding of

(L ∪ {0},S ∪ −S ∪ {0}). Then

|cos](Φ`,Φs)− cos](`, s)| ≤ 2δ,

where ](·, ·) denotes the angle between two vectors.

Proof. By definition, we have

cos](`, s) =
〈`, s〉
‖`‖2‖s‖2

and

cos](Φ`,Φs) =
〈Φ`,Φs〉
‖Φ`‖2‖Φs‖2

.

Thus, from (9.19) we have

∣∣∣∣ 〈Φ`,Φs〉‖`‖2‖s‖2

− cos](`, s)

∣∣∣∣ ≤ δ. (9.20)

3Note that the same guarantee can be established for the orthogonalized estimator under the
assumption that

√
N/MPΦT is a δ-stable embedding of (L,S ∪ −S).
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Now, using the fact that Φ is a δ-stable embedding, we can show that

(1− δ)
‖Φ`‖2‖Φs‖2

≤ 1

‖`‖2‖s‖2

≤ (1 + δ)

‖Φ`‖2‖Φs‖2

,

from which we infer that

∣∣∣∣ 〈Φ`,Φs〉‖`‖2‖s‖2

− 〈Φ`,Φs〉
‖Φ`‖2‖Φs‖2

∣∣∣∣ ≤ δ
〈Φ`,Φs〉
‖Φ`‖2‖Φs‖2

≤ δ. (9.21)

Therefore, combining (9.20) and (9.21) using the triangle inequality, the desired result

follows.

While Corollary 9.2 suggests that the absolute error in estimating 〈`, s〉 must scale

with ‖`‖2‖s‖2, this is probably the best we can expect. If the ‖`‖2‖s‖2 terms were

omitted on the right hand side of (9.19), then one could estimate 〈`, s〉 with arbitrary

accuracy using the following strategy: (i) choose a large positive constant Cbig, (ii)

estimate the inner product 〈Cbig`, Cbigs〉, obtaining an accuracy δ, and then (iii)

divide the estimate by C2
big to estimate 〈`, s〉 with accuracy δ/C2

big. Similarly, it is

not possible to replace the right hand side of (9.19) with an expression proportional

merely to 〈`, s〉, as this would imply that 〈Φ`,Φs〉 = 〈`, s〉 exactly when 〈`, s〉 = 0,

and unfortunately this is not the case. (Were this possible, one could exploit this fact

to immediately identify the nonzero locations in a sparse signal by letting `i = ei, the

ith canonical basis vector, for i = 1, 2, . . . , N .)

9.4.3 Simulations and discussion

In Figure 9.6 we display the average estimation error for the orthogonalized and

direct estimators, i.e.,

∣∣(N/M)sTΦT (ΦΦT )−1Φ`− 〈`, s〉
∣∣ /‖s‖2‖`‖2
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Figure 9.6: Average error in the estimate of the mean of a fixed signal s.

and

|〈Φ`,Φs〉 − 〈`, s〉| /‖s‖2‖`‖2

respectively. The signal s is a length N = 1000 vector with entries distributed

according to a Gaussian distribution with mean 1 and unit variance. We choose

` = [ 1
N

1
N
· · · 1

N
]T to compute the mean of s. The result displayed is the mean

error averaged over 104 different draws of Gaussian Φ with s fixed. Note that we

obtain nearly identical results for other candidate `, including ` both highly correlated

with s and ` nearly orthogonal to s. In all cases, as M increases, the error decays

because the random matrices Φ become δ-stable embeddings of {s} for smaller values

of δ. Note that for small values of M , there is very little difference between the

orthogonalized and direct estimators. The orthogonalized estimator only provides

notable improvement when M is large, in which case the computational difference

is significant. In this case one must weigh the relative importance of speed versus

accuracy in order to judge which approach is best, so the proper choice will ultimately

be dependent on the application.

In the case where |L| = 1, Corollary 9.2 is a deterministic version of Theorem 4.5
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of [142] and Lemma 3.1 of [143], which both show that for certain random construc-

tions of Φ, with probability at least 1− ρ,

|〈Φ`,Φs〉 − 〈`, s〉| ≤ δ‖`‖2‖s‖2. (9.22)

In [142] ρ = 2δ2/M , while in [143] more sophisticated methods are used to achieve

a bound on ρ of the form ρ ≤ 2e−cMδ2
as in (4.16). Our result extends these results

to the wider class of sub-Gaussian matrices. Furthermore, our approach generalizes

naturally to simultaneously estimating multiple linear functions of the data.

Specifically, it is straightforward to extend our analysis beyond the estimation of

scalar-valued linear functions to more general linear operators. Any finite-dimensional

linear operator on a signal x ∈ RN can be represented as a matrix multiplication Lx,

where L has size Z × N for some Z. Decomposing L in terms of its rows, this

computation can be expressed as

Lx =



`T1

`T2
...

`TZ


x =



〈`1, x〉

〈`2, x〉
...

〈`Z , x〉


.

From this point, the bound (9.19) can be applied to each component of the resulting

vector. It is also interesting to note that if L = I, then we can observe that

‖ΦTΦx− x‖∞ ≤ δ‖x‖2.

This could be used to establish deterministic bounds on the performance of the thresh-

olding signal recovery algorithm described in [143], which simply thresholds ΦTy to

keep only the K largest elements. Moreover, we have already applied the essence of

this result in Chapter 6 in our analysis of OMP.
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Note that one could clearly consider more sophisticated estimators, even for the

simple problem of linear function estimation. Specifically, in the case where S = ΣK ,

then one could obtain an exact estimate by first recovering the signal. In general, the

techniques described in this section are highly efficient but do not necessarily fully

exploit the structure in S, which leaves significant room for improvement for specific

choices of S.



Chapter 10

Compressive Filtering

This chapter1 analyzes the problem of filtering compressive measurements. We

begin with a simple method for suppressing sparse interference. We demonstrate the

relationship between this method and a key step in orthogonal greedy algorithms

and illustrate its application to the problem of signal recovery in the presence of

interference, or equivalently, signal recovery with partially known support. We then

generalize this method to more general filtering methods, with a particular focus

on the cancellation of bandlimited, but not necessarily sparse, interference. These

filtering procedures ultimately facilitate the separation of signals after they have been

acquired in the compressive domain so that each signal can be processed by the

appropriate algorithm, depending on the information sought by the user.

10.1 Subspace Filtering

10.1.1 Problem setup and applications

In practice, it is often the case that the signal we wish to acquire is contaminated

with interference. The universal nature of compressive measurements, while often

1This work was done in collaboration with Richard G. Baraniuk, Petros T. Boufounos, and
Michael B. Wakin [113, 134].
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advantageous, can also increase our susceptibility to interference and significantly

affect the performance of algorithms such as those described in Sections 9.2–9.4. It

is therefore desirable to remove unwanted signal components from the compressive

measurements before they are processed further.

More formally, suppose that the signal x ∈ RN consists of two components:

x = xS + xI ,

where xS represents the signal of interest and xI represents an unwanted signal that

we would like to reject. We refer to xI as interference in the remainder of this section,

although it might be the signal of interest for a different system module. Supposing

we acquire measurements of both components simultaneously

y = Φ(xS + xI), (10.1)

our goal is to remove the contribution of xI from the measurements y while preserving

the information about xS. In this section, we will assume that xS ∈ SS and that

xI ∈ SI . In our discussion, we will further assume that Φ is a δ-stable embedding of

(S̃S,SI), where S̃S is a set with a simple relationship to SS and SI .

While one could consider more general interference models, we restrict our at-

tention to the case where either the interfering signal or the signal of interest lives

in a known subspace. For example, suppose we have obtained measurements of a

radio signal that has been corrupted by narrow band interference such as a TV or

radio station operating at a known carrier frequency. In this case we can project

the compressive measurements into a subspace orthogonal to the interference, and

hence eliminate the contribution of the interference to the measurements. We fur-

ther demonstrate that provided that the signal of interest is orthogonal to the set of

possible interference signals, the projection operator maintains a stable embedding
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for the set of signals of interest. Thus, the projected measurements retain sufficient

information to enable the use of efficient compressive-domain algorithms for further

processing.

10.1.2 Theory

We first consider the case where SI is a KI-dimensional subspace, and we place no

restrictions on the set SS. We will later see that by symmetry the methods we develop

for this case will have implications for the setting where SS is a KS-dimensional

subspace and where SI is a more general set.

We filter out the interference by constructing a linear operator P that operates

on the measurements y. The design of P is based solely on the measurement matrix

Φ and knowledge of the subspace SI . Our goal is to construct a P that maps ΦxI to

zero for any xI ∈ SI . To simplify notation, we assume that ΨI is an N ×KI matrix

whose columns form an orthonormal basis for the KI-dimensional subspace SI , and

we define the M ×KI matrix Ω = ΦΨI . We recall the definitions of

PΩ = ΩΩ† (10.2)

and

PΩ⊥ = I − PΩ = I − ΩΩ† (10.3)

as the orthogonal projection operators onto R(Ω) and its orthogonal complement.

The resulting PΩ⊥ is our desired operator P : it is an orthogonal projection operator

onto the orthogonal complement of R(Ω), and its null space equals R(Ω).

Using Corollary 9.2, we now show that the fact that Φ is a stable embedding allows

us to argue that PΩ⊥ preserves the structure of S̃S = PS⊥I SS (where S⊥I denotes the

orthogonal complement of SI and PS⊥I denotes the orthogonal projection onto S⊥I ),
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while simultaneously cancelling out signals from SI .2 Additionally, PΩ preserves the

structure in SI while nearly cancelling out signals from S̃S.

Theorem 10.1. Suppose that Φ is a δ-stable embedding of (S̃S∪{0},SI), where SI is

a KI-dimensional subspace of RN with orthonormal basis ΨI . Set Ω = ΦΨI and define

PΩ and PΩ⊥ as in (10.2) and (10.3). For any x ∈ SS ⊕SI we can write x = x̃S + x̃I ,

where x̃S ∈ S̃S and x̃I ∈ SI . Then

PΩ⊥Φx = PΩ⊥Φx̃S (10.4)

and

PΩΦx = Φx̃I + PΩΦx̃S. (10.5)

Furthermore,

1− δ

1− δ
≤ ‖PΩ⊥Φx̃S‖2

2

‖x̃S‖2
2

≤ 1 + δ (10.6)

and

‖PΩΦx̃S‖2
2

‖x̃S‖2
2

≤ δ2 1 + δ

(1− δ)2
. (10.7)

Proof. We begin by observing that since S̃S and SI are orthogonal, the decomposition

x = x̃S + x̃I is unique. Furthermore, since x̃I ∈ SI , we have that Φx̃I ∈ R(Ω) and

hence by the design of PΩ⊥ , PΩ⊥Φx̃I = 0 and PΩΦx̃I = Φx̃I , which establishes (10.4)

and (10.5).

In order to establish (10.6) and (10.7), we decompose Φx̃S as Φx̃S = PΩΦx̃S +

PΩ⊥Φx̃S. Since PΩ is an orthogonal projection we can write

‖Φx̃S‖2
2 = ‖PΩΦx̃S‖2

2 + ‖PΩ⊥Φx̃S‖2
2. (10.8)

2Note that we do not claim that PΩ⊥ preserves the structure of SS , but rather the structure of S̃S .
This is because we do not restrict SS to be orthogonal to the subspace SI which we cancel. Clearly,
we cannot preserve the structure of the component of SS that lies within SI while simultaneously
eliminating interference from SI .
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Furthermore, note that P T
Ω = PΩ and P 2

Ω = PΩ, so that

〈PΩΦx̃S,Φx̃S〉 = ‖PΩΦx̃S‖2
2. (10.9)

Since PΩ is a projection onto R(Ω) there exists a z ∈ SI such that PΩΦx̃S = Φz.

Since x̃S ∈ S̃S, we have that 〈x̃S, z〉 = 0, and since SI is a subspace, SI = SI ∪ −SI ,

and so we may apply Corollary 9.2 to obtain

|〈PΩΦx̃S,Φx̃S〉| = |〈Φz,Φx̃S〉| ≤ δ‖z‖2‖x̃S‖2.

Since 0 ∈ SI and Φ is a δ-stable embedding of (S̃S ∪ {0},SI), we have that

‖z‖2‖x̃S‖2 ≤
‖Φz‖2‖Φx̃S‖2

1− δ
.

Recalling that Φz = PΩΦx̃S, we obtain

|〈PΩΦx̃S,Φx̃S〉|
‖PΩΦx̃S‖2‖Φx̃S‖2

≤ δ

1− δ
.

Combining this with (10.9), we obtain

‖PΩΦx̃S‖2 ≤
δ

1− δ
‖Φx̃S‖2.

Since x̃S ∈ S̃S, ‖Φx̃S‖2 ≤
√

1 + δ‖x̃S‖2, and thus we obtain (10.7). Since we trivially

have that ‖PΩΦx̃S‖2 ≥ 0, we can combine this with (10.8) to obtain

(
1−

(
δ

1− δ

)2
)
‖Φx̃S‖2

2 ≤ ‖PΩ⊥Φx̃S‖2
2 ≤ ‖Φx̃S‖2

2.
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Again, since x̃S ∈ S̃S, we have that

(
1−

(
δ

1− δ

)2
)

(1− δ) ≤ ‖PΩ⊥Φx̃S‖2
2

‖x̃S‖2
2

≤ 1 + δ,

which simplifies to yield (10.6).

Corollary 10.1. Suppose that Φ is a δ-stable embedding of (S̃S ∪ {0},SI), where

SI is a KI-dimensional subspace of RN with orthonormal basis ΨI . Set Ω = ΦΨI

and define PΩ and PΩ⊥ as in (10.2) and (10.3). Then PΩ⊥Φ is a δ/(1 − δ)-stable

embedding of (S̃S, {0}) and PΩΦ is a δ-stable embedding of (SI , {0}).

Proof. This follows from Theorem 10.1 by picking x ∈ S̃S, in which case x = x̃S, or

picking x ∈ SI , in which case x = x̃I .

Theorem 10.1 and Corollary 10.1 have a number of practical benefits. For example,

if we are interested in solving an inference problem based only on the signal xS, then

we can use PΩ or PΩ⊥ to filter out the interference and then apply the compressive

domain inference techniques developed above. The performance of these techniques

will be significantly improved by eliminating the interference due to xI . Furthermore,

this result also has implications for the problem of signal recovery, as demonstrated by

the following corollary, which is a generalization of Lemma 6.2 (the two are equivalent

in the case where ΨI is a submatrix of Φ).

Corollary 10.2. Suppose that Ψ is an orthonormal basis for RN and that Φ is a

δ-stable embedding of (Ψ(Σ2KS
),R(ΨI)), where ΨI is an N × KI submatrix of Ψ.

Set Ω = ΦΨI and define PΩ and PΩ⊥ as in (10.2) and (10.3). Then PΩ⊥Φ is a

δ/(1− δ)-stable embedding of (PR(ΨI)⊥Ψ(Σ2KS
), {0}).

Proof. This follows from the observation that PR(ΨI)⊥Ψ(Σ2KS
) ⊂ Ψ(Σ2KS

) and then

applying Corollary 10.1.
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We emphasize that in the above Corollary, PR(ΨI)⊥Ψ(Σ2KS
) will simply be the

original family of sparse signals but with zeros in positions indexed by ΨI . One

can easily verify that if δ ≤ (
√

2 − 1)/
√

2, then δ/(1 − δ) ≤
√

2 − 1, and thus

Corollary 10.2 is sufficient to ensure that the conditions for Theorem 3.2 are satisfied.

We therefore conclude that under a slightly more restrictive bound on the required

RIP constant, we can directly recover a sparse signal of interest xS that is orthogonal

to the interfering xI without actually recovering xI . Note that in addition to filtering

out true interference, this framework is also relevant to the problem of signal recovery

when the support is partially known, in which case the known support defines a

subspace that can be thought of as interference to be rejected prior to recovering

the remaining signal. Thus, our approach provides an alternative method for solving

and analyzing the problem of CS recovery with partially known support considered

in [144]. Furthermore, this result can also be useful in analyzing iterative recovery

algorithms, as was demonstrated in Chapter 6, or in the case where we wish to recover

a slowly varying signal as it evolves in time, as in [145].

This cancel-then-recover approach to signal recovery has a number of advantages.

Observe that if we attempt to first recover x and then cancel xI , then we require

the RIP of order 2(KS + KI) to ensure that the recover-then-cancel approach will

be successful. In contrast, filtering out xI followed by recovery of xS requires the

RIP of order only 2KS + KI . In certain cases (when KI is significantly larger than

KS), this results in a substantial decrease in the required number of measurements.

Furthermore, since all recovery algorithms have computational complexity that is at

least linear in the sparsity of the recovered signal, this can also result in substantial

computational savings for signal recovery.
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10.1.3 Simulations and discussion

In this section we evaluate the performance of the cancel-then-recover approach

suggested by Corollary 10.2. Rather than `1-minimization we use the CoSaMP al-

gorithm since it more naturally lends itself towards a simple modification described

below. More specifically, we evaluate three interference cancellation approaches.

1. Cancel-then-recover: This is the approach advocated in this section. We

cancel out the contribution of xI to the measurements y and directly recover

xS using the CoSaMP algorithm.

2. Modified recovery: Since we know the support of xI , rather than cancelling

out the contribution from xI to the measurements, we modify a greedy algorithm

such as CoSaMP to exploit the fact that part of the support of x is known in

advance. This modification is made simply by forcing CoSaMP to always keep

the elements of ΛI = supp(xI) in the active set at each iteration. Essentially,

this algorithm is exactly the same as the standard CoSaMP algorithm, but

where we change the definition of hard(x,K) to

[hard(x,K)]i =


xi, |xi| is among the K largest elements of |x| or i ∈ ΛI ;

0, otherwise.

After recovering x̂, we then set x̂n = 0 for n ∈ ΛI to filter out the interference.

3. Recover-then-cancel: In this approach, we ignore the fact that we know

the support of xI and try to recover the signal x using the standard CoSaMP

algorithm, and then set x̂n = 0 for n ∈ ΛI as before.

In our experiments, we set N = 1000, M = 200, and KS = 10. We then considered

values ofKI from 1 to 100. We choose SS and SI by selecting random, non-overlapping

sets of indices, so in this experiment, SS and SI are orthogonal (although they need
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Figure 10.1: SNR of xS recovered using the three different cancellation approaches for
different ratios of KI to KS compared to the performance of an oracle.

not be in general, since S̃S will always be orthogonal to SI). For each value of KI ,

we generated 2000 test signals where the coefficients were selected according to a

Gaussian distribution and then contaminated with an N -dimensional Gaussian noise

vector. For comparison, we also considered an oracle decoder that is given the support

of both xI and xS and solves the least-squares problem restricted to the known support

set.

We considered a range of signal-to-noise ratios (SNRs) and signal-to-interference

ratios (SIRs). Figure 10.1 shows the results for the case where xS and xI are nor-

malized to have equal energy (an SIR of 0dB) and where the variance of the noise

is selected so that the SNR is 15dB. Our results were consistent for a wide range of

SNR and SIR values, and we omit the plots due to space considerations.

Our results show that the cancel-then-recover approach performs significantly bet-

ter than both of the other methods as KI grows larger than KS. In fact, the cancel-

then-recover approach performs almost as well as the oracle decoder for the entire

range of KI . We also note that while the modified recovery method did perform
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Figure 10.2: Recovery time for the three different cancellation approaches for different
ratios of KI to KS .

slightly better than the recover-then-cancel approach, the improvement is relatively

minor.

We observe similar results in Figure 10.2 for the recovery time (which includes the

cost of computing P in the cancel-then-recover approach). The cancel-then-recover

approach is significantly faster than the other approaches as KI grows larger than

KS.

We also note that in the case where Φ admits a fast transform-based implementa-

tion (as is often the case for the constructions described in Chapter 5) the projections

PΩ and PΩ⊥ can leverage the structure of Φ in order to ease the computational cost

of applying PΩ and PΩ⊥ . For example, Φ may consist of random rows of a Discrete

Fourier Transform or a permuted Hadamard Transform matrix. In such a scenario,

there are fast transform-based implementations of Φ and ΦT . By observing that

PΩ = ΦΨI(Ψ
T
I ΦTΦΨI)

−1ΨT
I ΦT
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we see that one can use conjugate gradient methods to efficiently compute PΩy and,

by extension, PΩ⊥y [44].

10.2 Bandstop Filtering

10.2.1 Filtering as subspace cancellation

The approach to “filtering” described above may seem somewhat foreign to some-

one more familiar with the classical notion of filtering. For example, there has been

no mention thus far of frequency. We now show that these techniques can actually be

applied to more classical filtering problems, and we specifically consider the problem

of filtering out the contribution from a particular frequency band.

In order to do this, we model signals that live in the frequency band of interest as

living in a subspace. To obtain a basis for this subspace, we will consider length-N

windows of a bandlimited signal with band limits f1 and f2. Strictly speaking, such

signals do not live in a subspace of RN , but one can show that they live very close to a

low-dimensional subspace spanned by the first K discrete prolate spheroidal sequences

(DPSS’s) [146]. The DPSS’s are the finite-length vectors that are simultaneously most

concentrated in time and in frequency on the desired baseband bandwidth. In general,

we can generate N DPSS’s, but typically K � N is sufficient to capture most of the

energy in a bandlimited function. While there do exist rules of thumb for setting

K, we will leave K as a parameter to be set by the user, with larger K allowing for

better suppression of the undesired signal but also leading to slightly more distortion

of the desired signal. We will let Ψ denote the K×N DPSS basis, which is generated

by modulating baseband DPSS’s by a cosine of frequency (f2 − f1)/2. If we have

multiple bands we would like to filter out, then we can simply generate a basis for

each and concatenate them into a matrix Ψ.

Once we have obtained the basis Ψ, interference cancellation can be performed as
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described above by forming the matrix

P = I − ΦΨ(ΦΨ)†. (10.10)

This will cancel signals supported on the bandwidth we wish to filter out while pre-

serving the remainder of the signal.

10.2.2 Simulations and discussion

Our goal is to demonstrate the power of the proposed bandstop filtering algorithm.

Towards this end, we first consider the problem of obtaining a rough estimate of the

power spectral density (PSD) of a signal directly from the measurements. This will

allow us to evaluate the effectiveness of our filtering approach. Let t denote the vector

of time values corresponding to the sampling locations for the implicit Nyquist rate

sampled version of x. We then consider a grid of possible frequency values {fk}kmax
k=1

and compute

S(k) = |〈Φej2πfkt, y〉|2 = |yTΦej2πfkt|2 (10.11)

for k = 1, . . . , kmax where j here denotes
√
−1, i.e, we simply correlate y against a

series of vectors that are the outputs of the random demodulator applied to pure

sinusoid inputs. We could immediately provide a bound on the accuracy of this

estimator using the results of Section 9.4, but we do not pursue this further.

Note that the filtering matrix P in (10.10) is an orthogonal projection. This is

particularly useful, since after filtering we have Py = PΦx. One might expect that in

order to use the proposed method for estimating the PSD, we would need to compute

PΦej2πfkt. However, since P is an orthogonal projection matrix we obtain

〈Py, Pw〉 = wTP TPy = wTP 2y = wTPy = 〈Py, w〉.
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Therefore, we can use the same PSD estimator after we have filtered the measurements

without any modifications.

The result of our PSD estimation approach is a length-kmax vector S that provides

an estimate of the power in the measurements at a sequence of frequencies of interest.

This step is reminiscent of the first step of many greedy algorithms for CS recovery.

Clearly, this sequence of frequencies should be sufficiently dense to be able to detect

narrowband pulses. On the other hand, the spacing between frequencies should be

relatively large in order to reduce the required number of computations. This allows

for a tradeoff between the accuracy of the estimate S and the speed of its computation.

In the simulation results that follow, we consider the acquisition of a 300 MHz

bandwidth in which 5 FM-modulated voice signals are transmitting at carrier frequen-

cies unknown to the receiver. There is also a 140 kHz wide interferer at 200 MHz

that is at least 35 dB stronger than any other signal. Each signal occupies roughly

12 kHz of bandwidth. The random demodulator compressively samples at a rate of

30 MHz (20 times undersampled).

Our experiments assume an input of a tuned and downconverted RF signal. Ad-

ditionally, we assume the signal is collected in time-limited blocks, that the captured

signals are known to be FM modulated, that there are a known number of signals in

the collection bandwidth, and that the signals are separated by at least 30 kHz.

In Figure 10.3 we show the estimated PSDs before and after several stages of

filtering. In (a) we show the true PSD of the original input signal, while in (b)

we show the estimate obtained from compressive measurements using the method

described above. Note that in (b) the effect of the large interferer dominates the

PSD. However when we cancel it first (see (c)), we are able to obtain a much more

accurate estimate of the smaller signal components. As shown, our original SNR of

40 dB is reduced to ≈ 25 dB, approximately a 15 dB loss. This is expected, since

as described in Chapter 7 undersampling by a factor of 20 should result in an SNR
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Figure 10.3: Normalized power spectral densities (PSDs). (a) PSD of original Nyquist-
rate signal. (b) PSD estimated from compressive measurements. (c) PSD estimated from
compressive measurements after filtering out interference. (d) PSD estimated from com-
pressive measurements after further filtering.

loss of 3 log2(20) ≈ 13 dB. In (d) the signal at 175 MHz is kept and the other signals

are filtered out. In light of these results, in our view the bandstop filtering approach

works remarkably well. While a number of further questions remaining concerning

the limits of this approach to compressive filtering, this represents a very promising

initial step.



Chapter 11

Conclusion

This thesis builds on the field of CS and illustrates how sparsity can be exploited

to design efficient signal processing algorithms at all stages of the information pro-

cessing pipeline, with a particular emphasis on the manner in which randomness can

be exploited to design new kinds of acquisition systems for sparse signals. Specifically,

our focus has been an analysis of the use of randomness in the design of compressive

measurement systems that, when coupled with the appropriate signal models, enable

robust and accurate recovery, as well as efficient algorithms for compressive-domain

processing and inference. Our specific contributions have included: exploration and

analysis of the appropriate properties for sparse signal acquisition systems; insight

into the useful properties of random measurement schemes; analysis of orthogonal

greedy algorithms for recovering sparse signals from random measurements; an explo-

ration of the impact of noise, both structured and unstructured, in the context of

random measurements; and algorithms that directly solve inference problems in the

compressive domain without resorting to full-scale signal recovery, both reducing the

cost of signal acquisition and reducing the complexity of the post-acquisition pro-

cessing. To conclude, we reflect on some important remaining open problems and

possible directions for future research.

168
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11.1 Low-Dimensional Signal Models

In this thesis, we have primarily focused on sparse signal models as a way of cap-

turing the fact that many high-dimensional signals actually have a limited number

of degrees of freedom, and hence can be acquired using a small number of mea-

surements compared to their dimensionality. However, there are a variety of other

low-dimensional signal models that can also be exploited using similar techniques to

those discussed in this thesis and which may be even more useful in some settings.

For example, a model closely related to sparsity is the set of low-rank matrices:

X = {X ∈ RN1×N2 : rank(X) ≤ R}. (11.1)

The set X consists of matrices X such that X =
∑R

k=1 σkukv
∗
k where σ1, σ2, . . . , σR ≥ 0

are the singular values, and u1, u2, . . . , uR ∈ RN1 , v1, v2, . . . , vR ∈ RN2 are the singular

vectors. Rather than constraining the number of elements used to construct the signal,

we are constraining the number of nonzero singular values. One can easily observe by

counting the number of degrees of freedom in the singular value decomposition that

this set has dimension R(N1 + N2 − R), which for small R is significantly less than

the number of entries in the matrix — N1N2. Low-rank matrices arise in a variety

of practical settings. For example, low-rank (Hankel) matrices correspond to low-

order linear, time-invariant systems [147]. In many data embedding problems, such

as sensor geolocation, the matrix of pairwise distances will typically have rank 2 or

3 [148, 149]. Finally, low-rank matrices arise naturally in the context of collaborative

filtering systems such as the now-famous Netflix recommendation system [150] and

the related problem of matrix completion, where a low-rank matrix is recovered from

a small sampling of its entries [151–153].

Parametric or manifold models form another important class of low-dimensional

signal models. These models arise in cases where (i) a K-dimensional parameter θ
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can be identified that carries the relevant information about a signal and (ii) the

signal f(θ) ∈ RN changes as a continuous (typically nonlinear) function of these

parameters. Typical examples include a one-dimensional (1-D) signal shifted by an

unknown time delay (parameterized by the translation variable), a recording of a

speech signal (parameterized by the underlying phonemes being spoken), and an

image of a 3-D object at an unknown location captured from an unknown viewing

angle (parameterized by the 3-D coordinates of the object and its roll, pitch, and

yaw) [154–156]. In these and many other cases, the signal class forms a nonlinear

K-dimensional manifold in RN , i.e.,

X = {f(θ) : θ ∈ Θ}, (11.2)

where Θ is the K-dimensional parameter space. Manifold-based methods for image

processing have attracted considerable attention, particularly in the machine learning

community, and can be applied to diverse applications including data visualization,

classification, estimation, detection, control, clustering, and learning [156–164]. Low-

dimensional manifolds have also been proposed as approximate models for a number

of nonparametric signal classes such as images of human faces and handwritten dig-

its [165–167]. It is important to note that manifold models are closely related to

both sparse models and low-rank matrices; the set of low-rank matrices forms a

R(N1 + N2 − R)-dimensional Riemannian manifold [168], and while a union of sub-

spaces fails to satisfy certain technical requirements of a topological manifold (due to

its behavior at the origin), the manifold viewpoint can still be useful in understanding

sparse data [169].

Beyond these models, prior work in the linear algebra community on matrix com-

pletion [151] provides a variety of alternative low-dimensional models that might prove

useful. Additionally, one can consider combining these models to form new “hybrid”
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models. For example, in [170, 171] a matrix is modeled as the sum of a low-rank

component with a sparse component. One could consider similar hybrid models such

as a sparse or low-rank component plus a manifold-modeled component, or a combi-

nation of different manifold-modeled components. In fact, the latter model has close

connections to the finite rate of innovation framework [28], which although closely

related in spirit has yet to be clearly unified with the CS framework.

In the study of such low-dimensional signal models, it is often difficult to separate

the study of the theoretical properties of a particular model from the study of the

algorithms that exploit this model. Theoretical results often have algorithmic conse-

quences, and the goal of efficient algorithms can also prompt important theoretical

questions. Hence, the development of a signal model must be concurrent with the

study of algorithms. For all of these models, there are a variety of open theoretical

and algorithmic questions regarding signal acquisition, recovery, and processing.

11.2 Signal Acquisition

We have argued in this thesis that for any signal model X , a core theoretical

question concerns the design of an acquisition system Φ : X → RM that preserves the

structure of X . In Part II we discussed this problem for the case where X = ΣK and

briefly touched on a few other models, but for most of the signal models described in

Section 11.1 this remains an open problem. Specifically, for each of these models, we

would like to be able to answer questions such as: Given a low-dimensional model X ,

how can we design Φ so that the number of measurements M is as small as possible

while retaining a stable embedding of X ? What are the relevant properties of X that

determine how to choose Φ? And, how large M must be?

This thesis addresses the case where X represents K-sparse data in RN , showing

that random constructions of Φ can achieve M = O(K log(N/K)), which is essentially
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optimal. However, it has also been shown that if the sparse data also exhibits some

additional structure — for example, if the nonzero coefficients form a connected tree

or obey some kind of graphical model — then it is possible to eliminate the log(N/K)

factor [94]. A thorough examination of when this is possible and how substantial the

gains can be has yet to be performed. Furthermore, we speculate that many of the

same techniques will yield insight into problem of stably measuring low-rank matrices.

Finally, while some results on stable embeddings of smooth submanifolds of RN have

been established [172, 173], these are not known to be optimal, and little is known for

the cases where the manifold is not smooth or where the manifold is embedded in an

infinite-dimensional space such as L2[0, 1].

Note also that in the typical compressive sensing framework, it is assumed that Φ is

fixed in advance and in particular is non-adaptive to the structure in the signal. While

this can result in a simpler overall system, it is also enlightening to consider what can

be gained by using adaptive measurement schemes. In the context of sparse signal

acquisition, recent results have indicated that it is possible to acquire a signal using

substantially fewer measurements if one allows the measurements to be sequentially

adapted based on the previous measurements [174–176]. Alternatively, given a fixed

budget of measurements, an adaptive scheme can acquire a signal with significantly

higher fidelity in the presence of noise. However, these benefits have only been studied

in the context of sparsity — important questions remain for the low-rank matrix and

manifold model settings.

In this thesis we have also described two particular practical applications where

we can actually design hardware that directly acquires compressive measurements

of continuous-time signals or images. There are numerous additional applications of

sparse, low-rank, and manifold models in medical and scientific imaging, geophys-

ical data analysis, and digital communications. As research into these and other

low-dimensional models develops, it will certainly lead to additional opportunities
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and applications. For example, the single-pixel camera described in Chapter 5 can

also exploit manifold models for classification-driven imaging [56, 135, 136]. Matrix

completion will also likely have applications in hyperspectral imaging and video ac-

quisition. Further research into these models will lead to the development of a variety

of new sensing platforms and devices.

11.3 Signal Recovery

A distinguishing feature of CS is that the measurements may preserve the in-

formation about the signal without providing such a simple method for recovering

the original signal. The same phenomenon arises in the context of matrix recov-

ery/completion. These are just two examples of an emerging computational sensing

framework that attempts to leverage Moore’s Law to improve the efficiency of sensing

systems at a cost of increased computational requirements. For such measurement

schemes to obtain wide applicability, it is important to develop provably accurate and

efficient algorithms for recovery.

In this thesis, we have described a number of ways to solve the recovery problem

in the context of sparse data, broadly separated into optimization-based methods and

iterative methods. Similarly, the original formulations of the recovery algorithms for

matrix completion, in which the goal is to recover a low-rank matrix from a small

sample of its entries, also relied on optimization (in this case minimizing the nuclear

norm, or the `1-norm of the vector of singular values of the matrix) to recover the

matrix [152, 153, 177]. As in CS, subsequent work demonstrated that there also exist

powerful greedy algorithms for solving the matrix recovery problem [178]. Given

the potentially massive size of the matrices considered in many matrix completion

applications, the need for efficient algorithms is even more acute than in CS, and

improving these algorithms remains an important active area of research. Even less
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is known about recovery in the case of more general manifold models. While it is

possible in principle [179], there are no known polynomial-time algorithms for the

general recovery problem.

11.4 Signal Processing and Inference

In this thesis we have taken a first step in developing a framework for CSP, where

random measurements are processed directly to solve certain signal processing tasks.

The algorithms discussed in Chapters 9 and 10 represent a foundation for the devel-

opment of future CSP algorithms. There remain many open questions in this problem

area. First, in this thesis, sparsity is leveraged primarily to argue that we can use

random measurements to enable the design of agnostic and flexible hardware. It re-

mains unknown if sparsity can be exploited more directly to aid in other compressive

inference tasks. Some initial steps in this direction suggest that exploiting sparsity

more directly may be beneficial. For example, in [61] sparsity is explicitly leveraged

to perform classification with very few random measurements.

Manifold models have also been exploited in [135] to perform manifold-based image

classification. These results are extended to a sensor network setting that exploits

shared manifold structure in [60]. While most work in low-rank matrix models has

focused on the recovery problem, there is also significant potential for exploiting

these models for inference as well. In general, given a low-dimensional signal model

X , we would like to know when and how can we exploit the structure of X to extract

information directly from Φx. Does this allow us to acquire fewer measurements than

would be required for signal recovery? Can we do this using less computation than

simply recovering the signal and then applying standard algorithms? The answers to

these questions lie at the heart of the CSP paradigm and will serve to illuminate the

usefulness of compressive measurements in DSP.
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