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Abstract— This project is part of DARPA Beyond Linear 
Processing (BLiP) that proposes integrating compressive sensing 
techniques, artificial intelligence, machine learning, and track-
before-detect algorithms into a comprehensive processing string 
for radar systems. This effort focuses on the control, interfaces, 
and impact each algorithm has on the system’s processing. The 
challenges result from designing the algorithms to work together 
cohesively to minimize signal loss that has been traditionally 
accepted within existing radar systems. The objective is the ability 
to reduce the antenna or front-end hardware, which is the prime 
cost driver in fielding radars today. Integrating processing from 
recent signal processing advances is a cost-effective alternative to 
improve a radar’s sensitivity, accuracy, and volume coverage. 

Keywords—Space-Time-Adaptive-Processing (STAP), Adaptive 
Signal Processing, Direct Prolate Spherical Sequence (DPSS), 
Slepian Transform, Track-Before-Detect Tracking, Convolutional 
Neural Networks (CNNs),  

I. INTRODUCTION  

Since the algorithm research performed in the 1960s-1970s, 
the focus in radar has been to advance the hardware in order to 
improve performance. This approach is based on assumptions 
that made sense for the processing capabilities until recently. 
Since then, computer hardware capabilities as well as the 
mission requirements have progressed so that these assumptions 
and traditional processing limitations require rethinking. This 
program's effort is to integrate a new processing architecture that 
uses compressive sensing, AI/ML to enhance Space-Time 
Adaptive Processing (STAP), AI/ML enhanced detection, and 
introduces a new track before detect approach as nonlinear 
processing elements. During the program, the team will plan to 
demonstrate a performance enhancement estimated at 15-20 dB. 
This loss reduction directly shrinks the system’s power 
generation needs and array size. This impacts the radar system’s 
mobility and cost supporting other radars and sensors 
overlapping in coverage presenting a more accurate picture of 
the space. In this paper, we provide an overview of the Lockheed 
Martin – Georgia Institute of Technology team’s Beyond Linear 
Processing string architecture, including random pulse repetition 
rate (PRF) processing, advanced compression, Knowledge 

Aided High Dynamic Range Space Time Adaptive Processing 
(KA-HDR STAP), Object Amplification Test (OAT), Track-
Before-Detect (TBD) Tracker, and an AI/ML approach to 
estimating and managing environmental assessment. This paper 
describes this team’s approach, a culmination of advancements 
in radar signal processing. 

II. ARCHITECTURE OVERVIEW 

The architecture focuses on reducing interference from 
neighboring RF sources that exist in a dense spectrum 
environment. The random PRF results in irregularly spaced 
pulses and requires aligning to create a data cube that STAP can 
use to coherently cancel clutter and/or interference in time and 
Doppler. The alignment depends on the assumption that returns 
are first, second, or Nth time around. This architecture focuses on 
each assumption using a separate string in parallel. KA HDR 
STAP is applied to these In-phase and Quadrature (IQ) data 
cubes associated with each specific time around assumption [3] 
[6]. An iterative suppression technique from compressive 
sensing work in [5] reduces the interference further. The last 
technique prior to tracking is OAT, which is a U-net trained to 
recognize the various compressed pulses in a wide variety of 
situations and varying signal-to-noise ratio powers. Finally, the 
TBD tracker receives all the range-Doppler maps following the 
iterative suppression for the selected time around returns 
processed associated with confidence levels from OAT. The 
TBD tracker integrates this information from the suppression 
outputs with OAT’s confidence in whether it is a unique target 
return or not, which assists in reducing the processing for track 
birthing. The team has an IQ data simulator to robustly train and 
test the string for a specific radar. This string is illustrated in 
Figure 1. A containerized testing strategy also supports playback 
of recorded radar data. 

III. CONTAINERIZED TESTING STRATEGY  

A. Open and flexible architecture 

The Wideband RF Adaptive, Intelligent Target Hunting 
Network (WRAITHNet) testbed architecture meets OCS 
standards [14] including containerized applications, which 
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enables fast and cost-efficient integration of these new 
capabilities. This is achieved by defining common standards, 
interfaces and best practices for system and component 
development. There are three primary categories of interfaces 
identified for this project: 1) streaming IQ data interface; 2) 
high-speed (e.g. real time) message bus and 3) low-speed 
message bus following OMS as described in [15].  

 
Figure 1: A diagram of the DARPA BLiP testbed employing 

containerized integration. Each large block (e.g. Signal Processing 
Application)  represents a skill comprised of a collection of services 
(small blocks). The arrows follow the general signaling flow and in 

practice will connect containers via data adapters. 

B. DARPA BLiP Testbed 

A diagram of the DARPA BLiP testbed is a skill in Figure 
1. There are two primary applications, or services, within the 
skill’s scheduler. In addition to the IQ Simulator provides data 
similar to that received from the radar’s front end. Each service 
is comprised of digital payloads or libraries listed below. The 
objective of this approach is to provide a more flexible 
integration approach that will really assist in efforts to integrate 
new string processing such as the services in BLiP. The service 
interfaces are controlled so that the teams can generate or 
receive data in the proper format sooner and iterate for testing 
and analytical purposes more frequently. The IQ simulator skill 
is another enabler of this testing approach. Test and iterate 
often. As shown below, some services consist of a single digital 
payload, which depends on the design of the functionality. 
BLiP Skill  

1. Signal Processing Application Service: 
a. Compression Digital Payload 
b. Process Nth Time Digital Payload 
c. KA HDR STAP Digital Payload 
d. Interference Suppression Digital Payload 
e. OAT  Digital Payload 

2.  Track Application Service 
a. Track before Detect (TBD) tracker Digital 

Payload 

3. BLiP Scheduler Service 
a. Radar Manager Digital Payload 

IV. KEY CHARACTERISTICS OF THE NEW PROCESSING 

STRATEGIES 

A. Compression and Nth Time Processing 

The objective of these two processing blocks is to set up the 
data for the remainder of the post processing. The National 
Oceanic Atmospheric Administration Phased Array Radar 
(NOAA PAR) system in Norman, Oklahoma, is a radar testbed 
well suited for testing these algorithms and pulse compresses the 
data prior to sending it from the antenna or front end. Its typical 
array beam patterns are shown for simulated data in Figure 2. 

 

 
a. Transmit Pattern                         b. Receive Pattern 

Figure 2: Simulated Array Patterns with No Noise representative of 
NOAA PAR, Norman, Oklahoma, (a) Transmit Pattern (b) Receive 

Pattern. 

The automatic pulse compression is removed by convolving 
the inverse of the weights used on pulse compression for its 
NLFM waveform. This string will test compression using 
Slepian weights to reduce signal losses that typically occur. 
With additional interference reduction in the time sidelobes 
accomplished by the Interference Suppression and OAT 
techniques, any weighting needed to reduce time sidelobes, 
especially for an LFM waveform, can be removed. There is 
some weighting present to protect the hardware and that will 
remain. The pulses are then aligned properly assuming the 
reflection is from a particular pulse. This allows time to be 
referenced properly as well as any phase adjustments needed for 
holes in the receive window. The output is an IQ data cube to 
the STAP process based on each (up to N) of the target-pulse 
reflection association assumptions. 

B. KA HDR STAP for ground-based air-surveilance radar 

While ground-based air-surveillance radars are less hindered 
by ground clutter than airborne radars, radars such as NOAA 
PAR operate near the resonant frequencies of Water and 
Hydrogen in order to detect weather. STAP is being investigated 
for both ground and weather clutter rejection as well as for 
interference mitigation in the crowded spectrum and later 
transitions to airborne applications. For this ground application, 
however, airborne target detection within weather clutter is of 
interest. Wind, rain, and snow sources of clutter make it 
challenging to detect low and slow targets, such as an UAS. An 
advanced STAP technique using Slepian basis functions will be 
leveraged to remove weather and wind-blow clutter while 
significantly reducing STAP’s characteristic signal processing 
losses [3]. 

This effort will focus on maturing the KA HDR STAP 
processing. The KA HDR STAP algorithm from [3] is 
summarized and illustrated in Figure 3. The algorithm is similar 
to eigenvalue decomposition in STAP except the Slepian 



 
 

transform is used in place of PCA. This results in both a real 
time algorithm if using the Fast Slepian Transform, a wideband 
technique, and significantly reduces signal processing losses on 
the order of 3 dB while improving cancellation for spikey 
heterogeneous clutter. The technique is further improved by 
using covariance matrices from sample sets with similar clutter 
amplitude distributions. As shown in Figure 4, the clutter 
cancellation ratio (CCR) is improved and stabilizes more 
quickly using additional sample sets. Environmental 
Assessment is the processing that estimates and maintains 
histories of the covariance estimates across the surveillance 
volume. This is described in the next session. 

 

Figure 4: Performance Advantages for KA HDR STAP Using 
Additional Covariance Matrix Estimates Especially in the Clutter 
Cancellation Area While Other Techniques Only Benefit Slightly. 

C. Environment Assessment 

For environmental assessment, the objective is to segment 
the clutter reflection amplitudes based on their statistics and 
statistical deviation from Gaussian clutter [2][12].  At the high 
level, the process is described in Figure 5. 

 
Figure 5: Functional flowchart of the environmental assessment 

process. 

According to Figure 1, the raw IQ data is processed by 
environmental assessment after pulse compression. This 
prevents any smearing of a clutter’s response into neighboring 
range bins for the S-band frequencies. Since the interference and 
clutter may be in the sidelobes, training samples should be 
drawn from multiple receive channels and PRIs. In NOAA PAR, 
the receive channels are already sub-arrayed and steered close to 
the region of interest. The vector is processed using a sliding 
window of 200 through 400 fast-time samples across PRIs and 
channels.  The training sample sets are used to estimate the 
statistical shape and scale (ν and α respectively) of clutter or 
interference. Eventually, the estimated weights will be applied 
to the samples within the index range corresponding to these 
training samples. To calculate shape and scale, one must 
estimate and use a few non-central moments given by  

 μk =
1

M
∑ xi
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i=0 , 

 𝜈 =
4−

𝜇4

𝜇2
2

𝜇4
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2−2
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√𝜋
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𝛤(𝜈+1.5)
 

Currently, the team is using the product of skew and kurtosis, 
which can be derived from shape and scale, to distinguish 
between segments of heterogeneous, K-distributed clutter [13]. 
Then clustering is used to determine boundaries between 
distributions and the pairing between like distributions for 
training purposes. This approach is an enhancement on a body 
of earlier work performed in 1990s-2010s studying clutter 
distributions. 

A simple example of this method is shown using simulated 
clutter and varying the distributions in range. The impact of 
range on the amplitude is added by incorporating the inverse 
4th power of the simulated range values.  Thermal noise is 
added as white gaussian noise to achieve an average of 20 dB 

Figure 3 Architecture of the KA-HDR-STAP algorithm with Primary Processing Steps 



 
 

CNR. As clutter disappears, the noise becomes the dominating 
distribution. In Figure 6, an example of six clutter regions is 
illustrated. The impact of range on clutter power is clearly 
evident preventing the use of the first two moments, mean and 
variance, to distinguish between the clutter types. The team 
has aligned the distribution boundaries with clear geographical 
features using real-world data. Also, there are clear spikes 
evident around range cells 2000 and 5000 in Figure 6. This 
occurs for major feature differences. As shown in Figure 1, the 
resulting information from this clutter segmentation is used by 
OAT and the TBD Tracker. 
 

 
(a) 

  
(b) 

Figure 6: (a)Six Pure K-distributions scaled for a radar range of 0.5-
5km with AWG noise 20dB below the mean clutter value. (b) 

Resulting Kurtosis*Skew values plotted along the sample axis with 
vertical lines showing the transitions between K-distributions.  

D. Object Amplification Test (OAT) 

The OAT has resulted from transitioning recent successes 
in AI/ML-based medical image recognition to radar signal 
processing. Medical image recognition solves similar 
problems that are addressed by radar signal processing: both 
domains attempt to detect, locate, and classify objects in a 
sparse environment using compressed energy. Errors either as 
false detections or misses in either field can lead to serious 
consequences. One approach with documented success in the 
medical field is a unique convolutional neural network 
architecture [11], which down-samples and then up-samples 
its input with aggressive use of skip connections, as shown in 
Figure 7. 

Lockheed Martin (LM)’s prior internal research on applying 
the U-Net architecture to pulse-compressed radar I/Q data 

resulted in a radar detector which produced gains of 
approximately 3 dB versus a cell averaging – constant false 
alarm (CA-CFAR) detector. For BLiP, the LM RMS team will 
remove the U-Net’s detection layer and simply provide the 
OAT’s likelihood outputs along with additional data to inform 
the RFS TBD tracker’s probability estimates.  

 

 
Figure 7: High-Level U-Net Architecture 

E. Track-Before-Detect Tracker 

Multi-target tracking approaches typically rely on a detector 
to reduce the quantity of sensor data that the tracker needs to 
process. However, using a detector also sacrifices valuable 
information that is especially important in low-SNR scenarios 
where detector performance suffers. WRAITHNet uses a 
random finite set track-before-detect (RFS-TBD) tracker known 
as the G-LMB-GOM filter [17]. This enables track updates to be 
made directly on the range-Doppler maps constructed by OAT, 
improving performance on low-SNR targets. 

When target birth locations are not known a priori or cued 
by an outside source, multi-target trackers must initiate new 
tracks solely from the measurements—a process known as 
measurement adaptive birth. Adaptive birth procedures usually 
require a detector[16][17][18], so likelihood data from the OAT 
processing provides more fidelity than a typical detector for 
track initiation. Once a track is initiated, all future updates will 
use the range-Doppler maps. 
 

Figure 8: Block diagram of the G-LMB-GOM filter integration into 
the WRAITHNet String.  

However, OAT data allows a graceful approach to scaling 
back track hypotheses if loading becomes an issue. Hypotheses 
may be prioritized using the information from OAT to 
designate stronger beliefs in a target’s return. 

F. Iterative Suppression 

Recent work [1][5] has shown that the Fast Slepian 
transform [4] can be used to efficiently separate, remove 
interference, and beamform signals and relax Nyquist sampling 
requirements over traditional approaches. This works because 
an array effectively non-uniformly oversamples the signal if one 
considers both the time and spatial domain. The Fast Slepian 



 
 

approach to iterative interference cancellation during 
beamforming can be extended to the doppler and time domain 
as needed. This section provides a deeper dive into some of the 
key approaches used in the design. 

G. Fast Slepian Transform  

While the Slepian basis, or Discrete Prolate Spheroidal 
Sequences, and Multi-taper Spectral Estimation have been well 
known since its introduction [7][8][9], it has only recently been 
practical for real-time radar systems with the introduction of a 
fast approximation for the Slepian transform [4]. 

The Fast Slepian Transform projects the major Slepian basis 
elements for a given signal bandwidth and sampling rate onto 
DFT functions. This enables the continued use of an efficient 
FFT to be used in Slepian subspace filtering and dimension 
reduction methods [1]. This results in a more practical 
implementation of the Slepian transform. For a signal length of 
J samples, the FST computational complexity is O(J log J log 
1

∈
), which utilizes an error tolerance parameter,  This 

conveniently controls errors in our approximation of the ideal 
Slepian basis (5). The FFT has a known computational 
complexity, O(J log J). Thus, applications requiring less 
approximation error require a less complex Fast Slepian 
Transform (FST). The FST is significantly faster than with the 
exact Slepian Transform of O(W J 2), where the normalized 
bandwidth for the signal is 

 𝑊 =
𝐵

𝑓𝑠
 

The digitization is set by, W, based on the sampling frequency, 
fs, and signal source bandwidth, B.  The JxJ discrete prolate 
spheroidal matrix with subspace filtering and dimensionality 
reduction is derived from 

 𝛤𝐾[𝑚, 𝑛] ∶=
𝑠𝑖𝑛2𝜋𝑊(𝑚−𝑛)

𝜋(𝑚−𝑛)
 

for all 𝑚, 𝑛 ∈ {0,1, … , 𝐽 − 1}. Then we approximate, ΓK, using 

 𝜞𝐾 = 𝑭𝐾𝑭∗
𝐾 + 𝑳1𝑳∗2 + 𝑬𝐹  

where FK is a subset of DFT vectors corresponding to the lower 

frequencies, L1 and L2 matrices of O ( J log 
1

∈
) and EF giving an 

error of ‖𝐸𝐹‖ ≤∈ [4]. 

The fast Slepian transform, of complexity 𝑂(𝑁 log 𝑁 log
1

𝜖
), 

enables fast computation for applications of non-adaptive 
beamforming, doppler filtering, and pulse compression. Fast 
Multi-taper spectral estimation, of complexity 𝑂(𝐾𝑁 log 𝑁) 
for K tapers, enables real time signal separation using angular, 
Doppler, or time spreading of the sources [10]. 

H. Beamforming 

A diagonal modulation matrix [5],  

𝑬𝒇𝒄,𝝉[𝑚, 𝑚] = 𝑒−𝑗2𝜋𝑓𝑐𝜏𝑚 

is formed using the time delays estimated at each antenna 
element or sub-array center computed by the projection of the 
center positions, 𝒛𝒎, on the steering vector. The time delays 
are 

 𝝉𝒎 =  𝒛𝒎
𝑻 𝒔𝝓/𝑐 

Since we can approximate the signal using the first K 
modulated Slepian vectors, where K is determined by the 
bandwidth of the signal, W, and the width of the temporal 
window, 𝑻 =  𝑚𝑎𝑥(𝜏) −min(𝜏), and an oversampling 
correction L as 𝐾 =  ⌈2𝑊𝑇⌉ + 𝐿. We normalize the lags in (8) 
and use the first K Slepian basis sequences creating a non-
uniform, 𝑽𝒏𝒖,  and Nyquist, 𝑽𝒏𝒚𝒒, sampled matrices.   Slepian 

beamformed signal y becomes the Slepian weighted and 
summed signal, x, computed by  

 𝝍𝑯 = 𝑽𝒏𝒚𝒒(𝑽𝒏𝒖
𝑯 𝑽𝒏𝒖 + 𝝈𝟐𝑰)−𝟏𝑽𝒏𝒖

𝑯 𝑬𝒇𝒄,𝝉
𝑯  

and 

 𝒚 = 𝝍𝑯𝒙 

This results in a non-adaptive Slepian beamformer or focuses 
energy without cancelling interference for broadband signals. 
The Slepian beamformer for a simulated wideband signal 
compared to a traditional narrowband beamformer applied to a 
32 element uniform linear array is in Figure 9.  

 
Figure 9 Non-adaptive Slepian vs Narrowband beamformer for 
simulated wideband signal, 20GHz center frequency and 5000MHz 
bandwidth 

The performance of the Slepian beamformer demonstrates 
less degradation especially in beam broadening as a result of 
electronic steering. There is only signal loss due to the reduced 
antenna surface facing the target. Figure 10 shows the results of 
the Slepian and traditional beamformers processing in 
narrowband with narrowband signals.  



 
 

I. Iterative Interference  

The team will add interference cancellation with this Slepian 
processing in a variety of dimensions (e.g., angle, range, and 
Doppler). In (9), it is assumed that the bandwidth is known and 
centered around zero Hz with the array steered broadside. 
Practically, the beamforming, pulse compression, and 
additional Doppler filtering may be extended to remove a signal 
isolated from the target by estimating the location of the 
interference in one of these dimensions through an Orthogonal 
Matching Pursuit approach [5]. 
 

 
Figure 10 Non-adaptive Slepian vs Narrowband beamformer for 
simulated narrowband signal, 3GHz center frequency and 8MHz 
bandwidth 

At the start of each iteration, a multi-tapered spectral 
estimate, 𝑆𝑓 , is computed over a fine grid across the domain of 

interest for the residual, initialized with the input signal, 𝑥 . 
From this, the Slepian basis for the largest remaining source, 
𝜳1, is computed from a refined range and center. This basis for 
the largest remaining signal is added to appended to a Slepian 
basis dictionary 𝜳(𝑖) = [𝜳(𝑖−1) 𝜳1] . The signal is 
reconstructed from this dictionary as 

 𝒙  = 𝜳(𝜳𝐻𝜳 + 𝜎2𝑰)−1𝜳𝐻𝒚 

Then, the residual is computed as the difference between the 
original signal and the reconstruction of an isolated source by 

 𝒓 = 𝒚 − 𝒙 

[5] provides more details on the algorithm and cases for a 
partially observed signal.  

V. SUMMARY AND PLANS FORWARD 

This effort will result in a full radar processing string with 
the maturation of a variety of new techniques that have emerged 
from compressive sensing, artificial intelligence, and machine 
learning over the last decade. The advantages of these new 
techniques will be quantized and highlighted using NOAA PAR 
in Norman, Oklahoma, under DARPA BLiP. 
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