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ABSTRACT

Despite its state of the art performance in many applications,
the sparse Bayesian learning (SBL) procedure can be expen-
sive to implement, limiting its use in practice. In this paper,
we use the locally competitive algorithm (LCA) framework
to develop two continuous time dynamical systems whose
trajectories converge to a minimum of the SBL objective.
The resulting systems are neurally feasible and can be imple-
mented using primitives from analog electronics, potentially
opening the SBL procedure to new applications.

Index Terms— Compressed sensing, sparse Bayesian
learning, dynamical systems, locally competitive algorithm,
continuous time systems

1. INTRODUCTION

Recovering a sparse signal from noisy underdetermined mea-
surements is a fundamental problem in applied mathematics
and engineering [1, 2]. However, popular digital algorithms
for performing inference in this setting require large compu-
tational and power budgets, significantly limiting their use in
large real-time applications.

To reduce this computational and power complexity, re-
cent literature has introduced a class of continuous-time dy-
namical systems called locally competitive algorithms (LCA)
for solving a class of sparse recovery problems based on `1-
like penalties [3, 4]. These biologically inspired algorithms
can be mapped to analog electronics or neural architectures,
allowing sparse inference to be performed much more effi-
ciently than in corresponding digital implementations [5].

Although `1-like penalties are widely used in sparse re-
covery for their well-studied theoretical properties [6, 7], in
many applications the sparse Bayesian learning (SBL) pro-
cedure of [8, 9] has been shown to exhibit superior perfor-
mance, particularly in the presence of challenging dictionary
structure [10, 11]. Therefore, there is a need for algorithms
that can perform SBL inference in the same types of efficient
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analog architectures that LCAs implement other sparse recov-
ery procedures with.

In this paper, we propose two methods for implementing
the SBL inference procedure in the LCA framework, allow-
ing applications that require analog or neurally feasible im-
plementations to reap the performance benefits of SBL.

2. BACKGROUND

2.1. Sparse Bayesian learning

We consider the problem of recovering a sparse signal
x ∈ Rn from the noisy, underdetermined measurements
y = Φx + e, where Φ ∈ Rm×n represents the dictionary
and e ∈ Rm ∼ N (0, σ2I) represents measurement noise.

The SBL procedure has been shown to recover x from
measurements of this form more accurately than traditional
`1-based recovery procedures in some settings, particularly
when the dictionary contains challenging structure such as
coherence and mismatched column magnitudes [12, 10, 11].
Operationally, SBL is a Bayesian strategy that consists of a
probability model describing a generative model for the mea-
surements y and an inference procedure that computes a point
estimate of x using this probability model and the observa-
tions y [8, 9].

The probability model consists of:

• A Gaussian likelihood p(y|x, σ2) ∼ N (Φx, σ2I),
with a (conjugate) inverse gamma hyperprior on the
noise variance p(σ2) ∼ IG(c, d); and
• A Gaussian prior p(x|γ) ∼ N (0,γ) with (conju-

gate) inverse gamma hyperpriors on the noise variances
p(γi) ∼ IG(ai, bi).

The Gaussian prior on x does not have the high kurtosis of
distributions known to encourage sparsity; instead, SBL en-
courages sparsity in x through an inference procedure that
adaptively selects the prior variances γi from the data y as

γ∗ = arg max
γ

p(y|γ, σ2)

= arg min
γ

log |C|+ yTC−1y︸ ︷︷ ︸
L(γ)

, (1)



where C = σ2I + ΦΓΦT is the covariance of the Gaus-
sian posterior p(y|γ, σ2) and Γ = diag(γ). Once the prior
variances have been selected using (1), the point estimate
x̂ = arg maxx p(x|y,γ∗, σ2) can be computed in closed
form as x̂ = σ−2

(
Γ−1 + σ−2ΦTΦ

)−1
ΦTy. Intuitively,

this method for automatically generating a prior p(x|γ) pro-
motes sparsity because when γ∗i ≈ 0, a large amount of
evidence from the measurements is needed for the point
estimate x̂i to be nonzero.

The main computational cost of the SBL procedure is
minimizing the nonconvex objective (1), which is typically
performed iteratively [8, 13, 14]. The contribution of this
paper is two dynamical systems that allows this procedure to
be performed efficiently using continuous time (e.g., analog
or neural) systems.

2.2. Locally competitive algorithms

The locally competitive algorithm (LCA) [3, 4] is a dynami-
cal system whose trajectory converges to the solution of the
penalized least squares problem

x̂ = arg min
x

[
1

2
‖y −Φx‖22 + λC(x)

]
, (2)

where C(x) is a sparsity-encouraging penalty function.
The LCA is neurally feasible and can be implemented with
primitives from analog electronics, allowing fast and power-
efficient hardware implementations (see, e.g., [5]).

In the LCA framework, each coefficient xi is associated
with an internal state ui that is mapped to the coefficients by
a nonlinear thresholding function Tλ as

x(t) = Tλ (u(t)) .

The evolution of the internal states is described by the dynam-
ical system1 [3]

u̇(t) =
1

τ

[
ΦTy −

(
ΦTΦ− I

)
x(t)− u(t)

]
. (3)

Intuitively, each state ui in the LCA can be thought of as be-
ing simultaneously “charged” by the similarity of dictionary
column i and the measurements, “inhibited” by outputs xj
modulated by the similarity of dictionary elementsφi andφj ,
and decaying at a rate proportional to the current state.

A gradient descent-like dynamical system implementing
the problem (2) for general C(x) can be realized by selecting
Tλ(u) to make the trajectory of u proportional to the negative
gradient of the cost function. It can be shown [4] that this
relationship holds when Tλ(u) satisfies

λ∇xC(x) = u− Tλ(u). (4)

1We assume for conciseness that Φ is scaled to have unit column norms,
but this assumption can be relaxed with a simple modification of (3).

This relationship is used in [15] to implement a menagerie
of sparse coding procedures. Here, we use it to derive two
LCAs implementing the nonseparable, dictionary-dependent
penalty of the sparse Bayesian learning algorithm.

3. LCA IMPLEMENTATIONS OF SBL

3.1. Direct implementation

Although it is not immediately obvious how to represent the
SBL objective (1) in the form of the penalized least squares
problem (2), by using matrix identities as in [16] we can upper
bound L(γ) by

L(x,γ) =
1

2
‖y −Φx‖22+

λ

2

[
n∑
i=1

γ−1i x2i + log |C|

]
≥ L(γ).

Therefore, SBL inference can be performed by minimizing
L(x,γ), which fits the form of (2) with

Cγ(x) =
1

2

n∑
i=1

γ−1i x2i +
1

2
log |C| . (5)

If the value of γ that minimizes (5) was known, we could
implement SBL in the LCA framework simply by appealing
to the relationship (4). However, because we need to mini-
mize L(x,γ) jointly with respect to x and γ, we instead cre-
ate a second, coupled dynamical system which converges to
the γ that minimizes Cγ(x). By using the trajectory of this
coupled dynamical system as the value of γ in (5), we can
derive the threshold function as if γ was fixed.

Specifically, we minimize the penalty (5) with respect to
γ by introducing a coupled dynamical system of the form

γ̇i(t) = − 1

τγ

∂

∂γi
Cγ(x)

=
1

τγ

[
γ−2i (t)x2i (t)− φTi

(
λI + ΦΓ(t)ΦT

)−1
φi

]
(6)

for i = 1, . . . , n. Then, solving (4) for Tλ(u(t)) yields the
closed-form expression for the thresholding function

Tλ(u(t)) = u(t)− λ∇xC(x(t))

=
(
λΓ−1(t) + I

)−1
u(t). (7)

The complete “direct” implementation of SBL using the
LCA framework, which we call SBL-LCA, consists of the
coupled dynamical systems (3) and (6) together with the
threshold (7).

An important challenge when simulating and implement-
ing these systems is that the system (6) can oscillate around
zero when it is close to convergence, causing numerical prob-
lems when γi(t) becomes negative. To avoid this, we can
equivalently represent the system using the inverse variances
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Fig. 1. Left: thresholding function for SBL-LCA, (4). Right:
thresholding function for SBL-RWL1-LCA.

αi = γ−1i . Deriving the LCA using these inverse variances
results in the dynamical system

α̇i(t) =
1

τγ

[
−x2i (t) + α−2i (t)φTi

(
λI + ΦA−1(t)ΦT

)−1
φi

]
,

whereA = diag(α).
The threshold function for SBL-LCA (7) is depicted in

Figure 1 (left) for two values of γi. This threshold and dynam-
ical system can be intuitively viewed as encouraging sparsity
using the mechanism of SBL: when γi is large, the slope of
the liner threshold becomes smaller, reducing the magnitude
of the corresponding xi. At convergence, γi ≈ 0 for many i,
ensuring that these elements of xi will be zero-valued.

However, this linear threshold does not induce sparsity
in x(t) until the system describing γ(t) has reached conver-
gence. This is a critical drawback, as the sparsity of the out-
put x(t) over all time is an important factor in enabling low-
power hardware and neural implementations.

3.2. Reweighted `1 implementation

We address this drawback by drawing on related work that
separately connects both the LCA and SBL frameworks to
the reweighted `1 (RWL1) estimator of [17]. The RWL1 pro-
cedure iteratively solves

x̂(k+1) = arg min
x

1

2
‖y −Φx‖22 + λ

∑
i

w
(k)
i |xi| (8)

and updates the weights using a rule of the form w
(k+1)
i =

fi
(
x(k+1)

)
. (This connection has also been used as a starting

point for implementing SBL using recurrent neural networks
[18].) We show that using a similar procedure to implement
SBL inference with the LCA framework results in a system
that outputs a signal estimate x(t) that is sparse for a large
portion of the trajectory, not just at convergence.

In [16, 14], Wipf and Nagarajan show that the SBL objec-
tive (1) can be minimized using RWL1 with the weight update

fi

(
x(k+1)

)
=

√
φTi
(
λI + ΦΓ(k+1)ΦT

)−1
φi, (9)

where the variance parameters are computed at each step as
γ
(k+1)
j =

∣∣∣x(k+1)
j

∣∣∣ /w(k)
j .

Following the procedure of [15], this modified RWL1 pro-
cedure can be implemented in the LCA framework by intro-
ducing a coupled dynamical system to update the latent vari-
ables (now described by weights wi(t)):

ẇi(t) =
1

τw

 1

wi(t)
− 1√

φTi (λI + ΦΓ(t)ΦT )
−1
φi

 .
(10)

As before, the threshold Tλ,w(u) can be obtained by using (4)
(see [15] for details):

Tλ,wi
(ui) =

{
0, |ui| ≤ λwi
ui − λwisign(ui), |ui| > λwi.

(11)

This Tλ,w(u), depicted in Figure 1 (right), has the form of a
soft threshold function. The shrinkage effect of applying this
function is better able to promote exact sparsity in x(t) be-
fore the variances γ (represented in (11) through weights wi)
approach zero, allowing SBL-RWL1-LCA to present sparse
outputs much sooner than SBL-LCA.

The complete RWL1-based implementation of SBL using
the LCA framework, which we call SBL-RWL1-LCA, con-
sists of the coupled dynamical systems (3) and (10) together
with the threshold (11).

A challenge of implementing the complete SBL-RWL1-
LCA system is that the nonseparable expression for wi(t)
described by (9) requires the continuous update of a matrix
inverse. Although this nonseparability has been shown to be
an important component of SBL’s advantage over `1-based
methods [14], the large number of connections needed to
compute the required matrix inverse can be difficult to imple-
ment in analog electronics [19].

We can begin to relax this requirement by using matrix
identities to rewrite the argument of the radical in (10) as(

λ−1ΦTΦ
(
I + λ−1Γ(t)ΦTΦ

)−1)
ii
,

directly exposing the dependence on the Gram matrix ΦTΦ.
In many applications, the coherence structure between columns
concentrates the energy of ΦTΦ near the diagonal so that it
may be well-approximated by a banded matrix. Exploiting
this observation when implementing the latent dynamical
system (10) can significantly simplify computation.

4. NUMERICAL EXPERIMENT

In this section we present a brief demonstration of the opera-
tion of SBL-LCA and SBL-RWL1-LCA using the continuous
time dynamical system simulator DynamicalSystems.jl [20].
We generate a small system with Φ ∈ R16×32 in the noiseless
setting, where the sparse signal x has k = 2 nonzero val-
ues set to unity. We fix the SBL noise variance parameter to
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Fig. 2. Objective value of SBL-LCA and SBL-LCA-RWL1
as systems evolve, compared with the final objective value
achieved by SBL-EM and SBL-RWL1.

λ = 10−4 and use the time constants τu = 10−2 and τγ =
τw = 10−3 (i.e., the states representing variances evolve an
order of magnitude “faster” than the states ui). We have found
that this relationship between time constants works well as a
rule of thumb, but a more complete exploration of this rela-
tionship remains for future work.

Figure 2 shows the value of the SBL objective as the sys-
tems evolve compared to the final objective value achieved by
iterative implementations of SBL-EM and SBL-RWL1. We
observe that SBL-LCA-RWL1 converges rapidly to the final
objective value achieved by SBL-EM and SBL-RWL1, while
SBL-LCA converges much more slowly.

In Figure 3, we examine the trajectory of the latent states
{γi, ui} and the output (signal estimate) xi as both LCA
systems evolve. We observe from the state of γi (computed
from wi and xi in SBL-RWL1-LCA) that both systems are
able to quickly identify the correct support in both SBL-
LCA and SBL-RWL1-LCA, but this convergence requires
approximately an order of magnitude fewer time constants in
SBL-RWL1-LCA. This faster convergence is also reflected in
the trajectories of ui: latent states ui corresponding to zero-
valued elements converge to near-zero much more quickly in
the trajectory of SBL-RWL1-LCA. Further, we observe that
the form of the thresholding function in SBL-RWL1-LCA
both makes the output x sparser immediately after initializa-
tion and the off-support elements of x converge to zero more
quickly.

5. DISCUSSION

In this paper we presented two dynamical systems for solv-
ing the SBL inference problem using the LCA framework.
We demonstrated that the first algorithm, based on principles
used to implement other sparse coding procedures with LCA,
converges relatively slowly to a minimum of the SBL objec-
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Fig. 3. Value of latent variables γi and ui and output (signal
estimate) xi as the SBL-LCA and SBL-RWL1-LCA systems
evolve. Red traces correspond to components on the support
of the ground truth x; translucent gray traces correspond to
components off the support.

tive and does not have sparse outputs until convergence. To
address this problem, we proposed a second method based on
the reweighted `1 implementation of SBL and demonstrated
that it both converges more quickly and promotes sparser out-
puts during the entire trajectory.

Both proposed algorithms can in principle be extended
to many other applications of the SBL framework. For in-
stance, the procedures of [21, 22, 23] uses principles from
SBL to solve sparse coding problems in which multiple mea-
surements of a potentially time-varying signal are available.
Since the addition of a time dimension can make these al-
gorithms particularly expensive, they are excellent candidates
to benefit from the types of analog-feasible procedures de-
scribed here.

There are several avenues for future work. First, although
stability and convergence speed results have been shown for
some LCA systems [24, 25], these results do not immedi-
ately apply to the coupled dynamical systems we construct
to model SBL’s latent variance parameters. Second, although
we have found that the “partially separable” system described
in Section 3 works well for approximately banded dictionar-
ies, we do not have precise justification for how this affects
the fixed points of the resulting system. Finally, the contin-
uous time nature of these dynamical systems can be used to
improve applications where the inputs are continuous signals,
and a continuous time estimate of x is desired.



6. REFERENCES

[1] E. J. Candès and M. B. Wakin, “An introduction to com-
pressive sampling,” IEEE Signal Process. Mag., vol. 25,
no. 2, pp. 21–30, Mar. 2008.

[2] Y. C. Eldar and G. Kutyniok, Eds., Compressed Sensing:
Theory and Applications, Cambridge University Press,
Cambridge; New York, 2012.

[3] C. Rozell, D. Johnson, R. Baraniuk, and B. Olshausen,
“Locally competitive algorithms for sparse approxima-
tion,” in Proc. IEEE Int. Conf. on Image Processing
(ICIP), San Antonio, TX, USA, Sept. 2007, vol. 4, pp.
IV–169–IV–172.

[4] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A.
Olshausen, “Sparse coding via thresholding and local
competition in neural circuits,” Neural Computation,
vol. 20, no. 10, pp. 2526–2563, Apr. 2008.

[5] S. Shapero, C. Rozell, and P. Hasler, “Configurable
hardware integrate and fire neurons for sparse approx-
imation,” Neural Networks, vol. 45, pp. 134–143, Sept.
2013.

[6] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf.
Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[7] E. J. Candès, J. Romberg, and T. Tao, “Robust un-
certainty principles: Exact signal reconstruction from
highly incomplete frequency information,” IEEE Trans.
Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[8] M. E. Tipping, “Sparse Bayesian learning and the rele-
vance vector machine,” J. Mach. Learn. Res., vol. 1, no.
Jun, pp. 211–244, 2001.

[9] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning
for basis selection,” IEEE Trans. Signal Process., vol.
52, no. 8, pp. 2153–2164, Aug. 2004.

[10] D. P. Wipf, “Sparse estimation with structured dic-
tionaries,” in Proc. Adv. in Neural Inf. Process. Syst.
(NeurIPS), Granada, Spain, Dec. 2011.

[11] Z. Zhang, “Comparison of sparse signal recovery al-
gorithms with highly coherent dictionary matrices: The
advantage of T-MSBL,” Technical Report., 2012.

[12] D. P. Wipf, Bayesian Methods for Finding Sparse Rep-
resentations, Ph.D. thesis, University of California at
San Diego, La Jolla, CA, USA, 2006.

[13] M. E. Tipping and A. Faul, “Fast marginal likelihood
maximisation for sparse Bayesian models,” in Proc.
Int. Work. on Artificial Intell. and Stat. (AISTATS), Key
West, FL, USA, Jan. 2003.

[14] D. P. Wipf and S. Nagarajan, “Iterative reweighted l1
and l2 methods for finding sparse solutions,” IEEE J.
Sel. Top. Signal Process., vol. 4, no. 2, pp. 317–329,
Apr. 2010.

[15] A. S. Charles, P. Garrigues, and C. J. Rozell, “A com-
mon network architecture efficiently implements a vari-
ety of sparsity-based inference problems,” Neural Com-
putation, vol. 24, no. 12, pp. 3317–3339, Sept. 2012.

[16] D. P. Wipf and S. Nagarajan, “A new view of automatic
relevance determination,” in Proc. Adv. in Neural Inf.
Process. Syst. (NeurIPS), Vancouver, BC, Canada, Dec.
2008.

[17] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhanc-
ing sparsity by reweighted l1 minimization,” J. Fourier
Anal. Appl., vol. 14, no. 5-6, pp. 877–905, Dec. 2008.

[18] H. He, B. Xin, S. Ikehata, and D. P. Wipf, “From
Bayesian sparsity to gated recurrent nets,” in Proc. Adv.
in Neural Inf. Process. Syst. (NeurIPS), Long Beach,
CA, USA, Dec. 2017.

[19] A. Cichocki and R. Unbehauen, Neural Networks for
Optimization and Signal Processing, J. Wiley, Chich-
ester; New York, 1993.

[20] G. Datseris, “DynamicalSystems.jl: A Julia software
library for chaos and nonlinear dynamics,” JOSS, vol. 3,
no. 23, pp. 598, Mar. 2018.

[21] D. P. Wipf and B. D. Rao, “An empirical Bayesian strat-
egy for solving the simultaneous sparse approximation
problem,” IEEE Trans. Signal Process., vol. 55, no. 7,
pp. 3704–3716, July 2007.

[22] Z. Zhang and B. D. Rao, “Sparse signal recovery
with temporally correlated source vectors using sparse
Bayesian learning,” IEEE J. Sel. Top. Signal Process.,
vol. 5, no. 5, pp. 912–926, Sept. 2011.

[23] M. R. O’Shaughnessy, M. A. Davenport, and C. J.
Rozell, “Sparse Bayesian Learning with Dynamic Fil-
tering for Inference of Time-Varying Sparse Signals,”
arXiv:1902.05362, Feb. 2019.

[24] A. Balavoine, J. Romberg, and C. J. Rozell, “Conver-
gence and Rate Analysis of Neural Networks for Sparse
Approximation,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 23, no. 9, pp. 1377–1389, Sept. 2012.

[25] A. Balavoine, C. J. Rozell, and J. Romberg, “Discrete
and Continuous-Time Soft-Thresholding for Dynamic
Signal Recovery,” IEEE Trans. Signal Process., vol. 63,
no. 12, pp. 3165–3176, June 2015.


