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ABSTRACT
Suppose that we wish to determine an embedding of points
given only paired comparisons of the form “user x prefers
item qi to item qj .” Such observations arise in a variety of
contexts, including applications such as recommendation sys-
tems, targeted advertisement, and psychological studies. In
this paper we first present an optimization-based framework
for localizing new users and items when an existing embed-
ding is known. We demonstrate that user localization can be
formulated as a simple constrained quadratic program, and
that although item localization produces a set of non-convex
constraints, we can make the problem convex by strategically
combining comparisons to produce a set of convex linear con-
straints. Finally, we show that by iteratively applying this
method to every user and item, we can recover an accurate
embedding, allowing us to iteratively improve a given em-
bedding or even generate an embedding from scratch.

Index Terms— localization, paired comparisons, non-
metric multidimensional scaling, ideal point models, recom-
mendation systems

1. INTRODUCTION

In this paper we consider several problems related to learning
an embedding of points from paired comparisons of the form
“x is closer to qi than qj ,” where x, qi, qj ∈ Rn correspond
to points whose locations we would like to estimate. Obser-
vations of this form arise in a variety of contexts, but a partic-
ularly important class of applications involve recommenda-
tion systems, targeted advertisement, and psychological stud-
ies where x represents an ideal point that models a partic-
ular user’s preferences and qi and qj represent items that
the user compares. In this model, which dates back at least
to [1], items which are close to x are those most preferred
by the user. Paired comparisons arise naturally in this context
since precise numerical scores quantifying a user’s preference
are generally much more difficult to assign than comparative
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Fig. 1: Set of linear constraints induced by the binary paired com-
parisons. Shading represents the feasible region resulting from the
set of comparisons.

judgments [2]. Moreover, data consisting of paired compar-
isons is often generated implicitly in contexts where the user
has the option to act on two (or more) alternatives; for in-
stance, they may choose to watch a particular movie or click
a particular advertisement out of those displayed to them [3].
In such contexts, the “true distances” in the ideal point model
are generally inaccessible in any direct way, but it is neverthe-
less still possible to learn useful information from such data.

Some of the simplest questions in this model arise in
the setting where we are given an existing embedding of
users/items (as in a mature recommender system) and con-
sider the on-line problem of localizing a single new user or
item based on paired comparisons. (We will return later to the
problem of how this initial embedding might be generated.)
In this context, there are two main problems of interest: lo-
calizing users and items. In the case of localizing a user, [4]
proposes a relatively simple approach (which we review in
greater detail in Section 2) which builds on the observation
that each comparison provided by a user with ideal point
x divides the space Rn in half and tells us which side of
a hyperplane the point x lies in. As we will see in Sec-
tion 3, however, localizing a new item from the same kind of
measurements is a bit more complicated – in particular, the
comparisons now give rise to a set of non-convex constraints.
However, we will demonstrate how to relax this problem to a

978-1-5090-0746-2/16/$31.00 c©2016 IEEE



convex one that is extremely similar to the approach we take
for localizing users, and which we demonstrate in Section 4
to be highly effective in practice.

In Section 5 we return to the problem of generating an
embedding of users/items in the first place. One approach
would be to generate an item embedding independently us-
ing a variety of methods, such as multidimensional scaling
applied to a set of item features, and then localize each user
using the approach described above. A more robust approach
that uses only paired comparisons is described in [5], which
proposes a general purpose algorithm for nonmetric multidi-
mensional scaling based on semidefinite programming. Un-
fortunately, this algorithm scales poorly with the number of
total users/items. In this paper we consider an alternative
and highly scalable scheme based on the iterative application
of the algorithms described in Sections 2 and 3, which we
demonstrate to be surprisingly effective.

2. LOCALIZING A USER

We first review the method of localizing a new user (given an
existing embedding of items) presented in [4]. Each binary
paired comparison of the form “user x prefers item q

(k)
i to

item q
(k)
j ,” which we denote ‖x − q(k)i ‖22 ≤ ‖x − q

(k)
j ‖22, is

represented in the optimization problem as a constraint. Here,
qi refers to the item that is preferred (over qj), and the super-
script (k) indicates that the two items are represented in the
kth comparison. In the objective function of our optimization
problem, we minimize the total magnitude of comparison vi-
olations (expressed in the vector of slack variables ξ) plus a
regularization term:

minimize
x∗, ξ

1
2‖x

∗ − x0‖22 +
∑
k

ckξk

subject to ‖x∗ − q(k)i ‖
2
2 ≤ ‖x∗ − q(k)j ‖

2
2 + ξk

ξk ≥ 0

(1)

The values {ck} represent how heavily violations of each
comparison are penalized relative to each other and the reg-
ularization term; adjusting {ck} is a natural way to represent
the relative confidence we have in each the accuracy of each
comparison. In the objective function, x0 represents an ini-
tial estimate of the ideal point for the user to be localized
(in the case where we do not have a previous estimate of x,
we initialize x0 to the origin or the center of the embedding
of items). The regularization term ‖x∗ − x0‖22 serves three
purposes: (i) it constrains x∗ when the set of comparisons
does not result in a completely bounded feasible region; (ii)
it regularizes the solution to avoid sensitivity to outliers; and
(iii) it allows us to bias the solution towards a pre-existing
estimate, which can be very helpful when such an estimate
exists and our comparisons are noisy or small in number.

While perhaps not initially obvious, the optimization
problem in (1) is a standard quadratic program with linear

constraints. To see this, one needs to simplify the constraint,
eliminating the ‖x∗‖22 term from both sides and rearranging
to obtain the linear constraint:

2
(
q
(k)
j − q(k)i

)T
x∗ + ‖q(k)i ‖

2
2 − ‖q

(k)
j ‖

2
2 − ξk ≤ 0 (2)

From this form, we can see that each linear constraint result-
ing from a binary paired comparison defines a half-space in
Rn where the localized user x lives. Figure 1 shows a ge-
ometric interpretation of the feasible region created by sev-
eral comparisons. See [4] for further details. From here we
can simplify the optimization problem by assigning the vector
2(q

(k)
j − q(k)i )T from each comparison to the rows of matrix

A and the scalar entries ‖q(k)i ‖22 − ‖q
(k)
j ‖22 as entries of the

column vector b. With this notation, the optimization problem
takes its final form as:

minimize
x∗, ξ

1
2‖x

∗ − x0‖22 + cT ξ

subject to Ax∗ + b− ξ ≤ 0

− ξ ≤ 0

(3)

where the inequality sign in both constraints is applied
element-wise. This is a standard quadratic program, and
is solvable using a convex optimization software package
such as CVX [6, 7].

3. LOCALIZING AN ITEM

To localize a new item given an existing embedding of
users/items, we begin by constructing an optimization prob-
lem similar to (1). However, when localizing a new item, it
is useful to divide the constraints into two groups: (i) those
deriving from comparisons in which the item to be localized,
q∗, is the item preferred to some alternative q(k)j , and (ii)
those for which q∗ represents the item preferred less than
some q(k)i . We will let T+ and T− index these two sets of
constraints in our optimization problem as follows:

minimize
q∗, ξ

1
2‖q

∗ − q0‖22 +
∑
k

ckξk (4)

subject to ‖x(k) − q∗‖22 ≤ ‖x(k) − q(k)j ‖
2
2 + ξk k ∈ T+

‖x(k) − q(k)i ‖
2
2 ≤ ‖x(k) − q∗‖22 + ξk k ∈ T−

ξk ≥ 0

As illustrated geometrically in Figure 2, this set of constraints
makes the problem nonconvex. On the one hand, each con-
straint in T+ (where q∗ is the preferred item) defines a hyper-
sphere within which the localized item must lie. Constraints
of this type are convex (but quadratic, in contrast to the linear
constraints that arise when localizing a user). On the other
hand, each constraint in T− (where q∗ is the less preferred
item) defines a hypersphere within which the localized item
cannot lie. The inclusion of the constraints in T+ make the
optimization problem in (4) nonconvex.



(a) Constraint resulting in
convex feasible region (shaded)

(b) Constraint resulting in
non-convex feasible region

(shaded)

Fig. 2: Feasible region in R2 for (a) comparisons where the item
to be localized is the preferred item, and (b) comparisons where the
item to be localized is the less preferred item.

To make the optimization problem convex, we consider
one possible convex relaxation; we combine pairs of com-
parisons by simply adding them, creating a single linear con-
straint from two quadratic constraints. While other convex
relaxations are possible, we will see that this simple method
results in linear constraints, leads to a computationally effi-
cient algorithm, and produces good results in practice.

To describe our procedure, we will suppose that q∗ de-
notes the item that we wish to update. We can combine con-
straints by adding them to produce useful linear constraints
when the pair is of the form

‖x(k) − q∗‖22 ≤ ‖x(k) − q(k)j ‖
2
2

‖x(`) − q(`)i ‖
2
2 ≤ ‖x(`) − q∗‖22

(5)

and x(k) 6= x(`). The requirement that q∗ appear on opposite
sides of the two inequalities ensures the quadratic terms in-
volving q∗ cancel when adding, and x(k) 6= x(`) is necessary
to avoid making the linear term in the resulting constraint zero
and the constraint vacuous.

For each inequality, the sides not containing the item that
we wish to localize (q∗) are constants, which we denote c and
d. We then combine the inequalities as

‖x(k) − q∗‖22 ≤

c︷ ︸︸ ︷
‖x(k) − q(k)j ‖

2
2

+ ‖x(`) − q(`)i ‖
2
2︸ ︷︷ ︸

d

≤ ‖x(`) − q∗‖22.
(6)

Expanding the norm in each inequality, we note that com-
bining the comparisons results in the cancellation of the
quadratic term ‖q∗‖22, simplifying the pair of more compu-
tationally expensive quadratic constraints into a single linear
one. Adding and simplifying yields

2
(
x(`) − x(k)

)T
q∗ ≤ c− d+ ‖x(`)‖22 − ‖x(k)‖22. (7)

Fig. 3: Linear constraint generated by the combination of two
quadratic constraints. Gray shading represents the feasible regions
resulting from each of the two paired comparisons; blue hatched
shading represents the feasible region defined by the hyperplane re-
sulting from the combination of two comparisons. Note that the lin-
ear relaxation results in a much larger feasible region.

We can substitute these constraints into (4) to obtain a
linearly-constrained quadratic problem that has the same
form as the user localization optimization problem in (3),
with each 2(x(k) − x(`))T assigned to a row of A and each
c− d+ ‖x(`)‖22 − ‖x(k)‖22 assigned to an entry of b.

Figure 3 shows a geometric interpretation of the linear
constraint induced by a combination of the two quadratic con-
straints. It is important to note that while the linear relaxation
obtained by this procedure results in a much larger feasible
region (in particular, one that is unbounded), the combination
of many such pairs of constraints may still be an effective
simplification of the original set of nonconvex constraints.

Note that if we have a large number of comparisons, the
number of valid combinations – |T+||T−| – could be ex-
tremely large. In this case, we simply choose a subset of m
combinations at random, although more intelligent choices
are likely possible (particularly in real-world applications,
where the distribution of users and items present in com-
parisons will be highly uneven). It is also important to note
that only pairs of comparisons that produce a hyperplane
like the one shown in Figure 3, where the hyperplane splits
x(k) and x(`), are combined in this way. To only select
combinations with this behavior, we also require that either
aTx(k) < b < aTx(`) or aTx(`) < b < aTx(k) for each
combination.

4. SIMULATIONS

In this section, we demonstrate the performance of these ap-
proaches to localizing a new user or item. For now we assume
a priori knowledge of an existing embedding of users/items,
and use our list of paired comparisons to localize a new user
or item in the embedding.

In each simulation, a ground truth embedding of many
users and items is generated uniformly on the unit square in
Rn. Comparisons are generated by randomly selecting a user
x(k) and two items q1 and q2, q1 6= q2. For each compar-
ison, q1 and q2 are assigned to q(k)i and q(k)j to make them



(a) (b)

Fig. 4: Localization error measured in terms of `2 distance from ground truth as a function of the total number of comparisons available to
the system, which contains 100 users and 100 items. (a) User localization error. (b) Item localization error.

consistent with ‖x(k) − q(k)i ‖2 ≤ ‖x(k) − q(k)j ‖2.

In each of the following simulations, our “ground truth”
embedding consists of 100 users and 100 items. Comparisons
are generated uniformly at random from the complete set of
users and items, and performance is measured by computing
the `2 distance between the estimated point and the ground
truth. We repeat each simulation 30 times and report the mean
and standard deviation.

In the first simulation, we demonstrate the accuracy with
which we can localize a new user based on the number of
comparisons we have available. As shown in Figure 4(a),
a very small number of comparisons involving the localized
user results in a large error, but this error drops off rapidly
with an increasing number of comparisons. Note that in this
paper we consider comparisons chosen randomly; similar per-
formance could be obtained with a much smaller number of
comparisons if the user and items to compare were adaptively
selected (see, for example, the approaches in [8, 9, 10]). Fig-
ure 4(a) also shows the large impact of dimensionality on the
`2 recovery error. This is expected; on the unit square in Rn,
the maximum possible error grows as

√
n. These results are

consistent with recent theoretical results for this problem es-
tablished in [10, 11].

Next, we apply the item localization procedure described
in Section 3 to localize a new item given an existing embed-
ding of users/items. As noted in the previous section, we
select a subset of comparison combinations at random from
the (possibly large) set of valid combinations; here, we pick
m = 20000 combinations. In Figure 4(b), we show that our
convex relaxation of adding comparisons allows us to localize
a new item with accuracy comparable to that of the user local-
ization problem. This may be somewhat surprising since our
procedure for generating a convex set of constraints seems to
discard a significant amount of information.

5. GENERATING A COMPLETE EMBEDDING

Using the procedures described in Sections 2 and 3, we can
localize a new user or item into an embedding of users and
items given only a list of paired comparisons. However, our
localization procedures can also be used to improve an ex-
isting embedding using a list of paired comparisons. When
presented with an existing embedding, we can iterate through
each point and use our localization procedure to improve its
accuracy. Because the accuracy with which we can localize
a new point depends on the accuracy of every other point in
the embedding, each update can improve the current point as
well as the results of future iterations.

The iterative localization procedure is as follows: (i) Cre-
ate an initial embedding (if no initial embedding is available,
initialize each point at random); (ii) Iterate through each user
and item in the embedding, updating the user/item’s location
at each step by solving the optimization problem from Sec-
tions 2 or 3 as appropriate. Repeat this iteration until conver-
gence.

Using this procedure, we can use a list of paired compar-
isons to improve the accuracy of a noisy embedding of users
and items. Further, even if we do not have an initial estimate
of the embedding, we can use this procedure to generate one
from scratch with surprising accuracy.
Improving an existing embedding. To evaluate the poten-
tial of this approach, we begin by generating comparisons be-
tween users and items as in the experiments in Section 4, but
after generating the comparisons we perturb every user and
item in the embedding with Gaussian noise. Figure 5 shows
the reduction of error our procedure can achieve for three dif-
ferent perturbation noise levels (σemb). We show performance
both in terms of the `2 distance to the ground truth (across
all points in the embedding, after applying an affine trans-
formation, also known as the Procrustes distance) but also in



Fig. 5: Reduction in noise achieved for a noisy embedding in R2, measured in terms of percent of all comparisons violated and mean `2
recovery error calculated using the Procrustes distance.

terms of the percentage of observed comparisons which are
violated by the learned embedding. Given a suitable number
of iterations, we observe that we can reduce the error in the
embedding to approximately the same level, regardless of the
perturbation noise level.
Generating an embedding from scratch. Our iterative pro-
cedure is surprisingly effective at “denoising” an embedding,
even when it is corrupted with enough noise to violate up to
35% of the given comparisons. This suggest that it may be
possible to obtain similar results when we have no a priori
knowledge of the embedding at all, generating an embedding
from scratch.

In this simulation, we again create a ground truth em-
bedding of users and items distributed uniformly on the unit
square in Rn. We use this ground truth embedding to gen-
erate a list of binary paired comparisons, then initialize the
reconstructed embedding to a random set of points and use
only the list of comparisons to recreate the embedding. As
in the previous experiments, we measure the accuracy of our
reconstruction using the Procrustes distance between the re-
construction and original embedding.

Figure 6 shows that even with a random initial embed-
ding (approximately 50% of comparisons violated), we can
generate an embedding with only a modest level of error in
only a few passes over the entire dataset. While the mean `2
recovery error in Figure 6 shows error increasing with dimen-
sionality, the error does not grow as quickly as the scaling of
distances with dimension (which increases as

√
n).

6. DISCUSSION

In this work, we have extended the optimization-based
method in [4] for localizing a new user into an embedding of
users/items using a set of binary paired comparisons. This
paper has two main contributions: first, we derive a convex
relaxation which allows us to use a similar procedure for lo-

calizing items into an embedding. Next, we develop a method
for iteratively improving a noisy embedding or generating an
embedding from scratch using only a set of paired compar-
isons. Simulations on synthetically generated data show that
given a suitable number of comparisons, we can localize new
users and items extremely accurately and can generate an em-
bedding with good accuracy, even in high dimensions. The
algorithm is computationally efficient and easily paralleliz-
able: localizing a single point only requires solving a simple
linearly-constrained quadratic program, and generating an
approximation of the entire embedding only requires a few
iterations through each user/item in the embedding (which
can be performed in parallel).

This efficiency is key, because in real-world recommen-
dation systems the number of users and items may be ex-
tremely large. This algorithm scales far better in terms of both
computation and memory requirements than existing proce-
dures based on semidefinite programming such as generalized
non-metric multidimensional scaling [5]. However, the per-
formance of our algorithm might be significantly improved
by an accurate knowledge (or estimate) of several “landmark
points,” which could be generated by such a procedure.

Finally, we briefly note that the ideal point model de-
scribed in this paper, while closely related, is distinct from the
low-rank model used in matrix completion approaches which
have recently gained much attention, e.g., [12, 13]. Although
both models suppose preferences are guided by a small num-
ber of factors, the ideal point model leads to preferences that
are non-monotonic functions of those attributes. There is em-
pirical evidence that the ideal point model captures user be-
havior more accurately than factorization based approaches
do [14]. Nevertheless, the results in [15, 16, 17, 18], which
consider binary observations, paired comparisons, and other
more general ordinal measurements in the low-rank context,
share a similar inspiration as this work.



Fig. 6: Recovery error for a generated embedding measured in terms of percent of all comparisons violated and mean `2 recovery error
calculated using the Procrustes distance.
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