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ABSTRACT

Hawkes processes are a class of auto-regressive point pro-
cesses that are commonly used in modeling data in which
events tend to cluster and influence the likelihood of future
events. Because of their ability to model and explain how
events or processes can influence each other, Hawkes pro-
cesses (and their multivariate extensions) have been applied
in a variety of practical applications such as analyzing finan-
cial time series, communication networks, and biological net-
works, to name just a few. In practice, the dynamics of such
systems often depend on external factors that may change
over time and that may drive different kinds of behavior. In
this paper, we consider a switched Hawkes process which can
be used to model systems in which the parameters of the pro-
cess dynamically change depending on some (known) exter-
nal state. We propose a simple maximum likelihood estima-
tion approach which we validate using synthetic simulations.
We then apply our model to a real-world traffic sensor dataset
to study traffic patterns during different configurations of the
traffic lights at an intersection.

Index Terms— Hawkes processes, switched state mod-
els, maximum likelihood estimation, traffic data modeling

1. INTRODUCTION

Hawkes processes [1] are an important tool for analyzing
datasets consisting of event times that exhibit auto-regressive
behavior. For example, in many settings, the occurrence of an
event is often an indicator that more events are likely in the
near future. For example, earthquakes [2, 3, 4] are often pre-
ceded and/or followed by an elevated level of seismic activity
(aftershocks), activity in financial markets [5, 6, 7] can be
highly clustered, and activity within many kinds of networks
(e.g., communication, social, transportation, etc. [8, 9, 10]),
is often clustered/correlated across nodes. In all of these ex-
amples as well as many others, Hawkes processes (and mul-
tivariate extensions) have been used to aid in understanding
the structure of the underlying signals/networks. Specifically,
in a Hawkes process the underlying intensity function(s) that
determine the rate at which events occur varies as a function
of the event history according to a parametric model. This
model reveals how much an event increases the probability

978-1-7281-7605-5/21/$31.00 ©2021 IEEE 5170

of future events, as in an earthquake increasing the likelihood
of aftershocks or a social media post by a particular user
increasing the likelihood of subsequent posts by other users.

In many applications, however, the underlying dynamics
may change over time. For instance, the background seis-
micity and decay rates of earthquakes can change depeng-
ing on seismic state (e.g., foreshocks, main shocks or after-
shocks [11]). Similarly, activity in a stock market is impacted
by price-predictive signals such as the bid-ask spread and
queue imbalance, which vary over time [12]. Finally, in a
transportation network, the dynamics of a traffic flow can
change depending on external factors such as the state of var-
ious traffic lights and other control mechanisms. In such sce-
narios, there are observable external factors that define an un-
derlying system state and that can have a significant impact
on the underlying system behavior.

In this paper, we consider a switched version of the
Hawkes process that explicitly accounts for changes in be-
havior depending on the underlying state. Within a given
state, the system is described by a set of parameters that
characterize the system’s behavior. In our model, we allow
these parameters to change depending on the underlying state
history. We propose and evaluate a general modeling and
inference strategy. We then apply this model to a real-world
traffic sensor dataset, showing that our approach can effec-
tively learn the underlying traffic flows in this network using
only event timing information at each sensor.

2. BACKGROUND

2.1. Hawkes processes

Hawkes processes — first introduced in [13] — are a class of
linear, auto-regressive point processes. In a Hawkes process,
the occurrence of an event influences the rate at which events
will occur in the future. Specifically, the distribution of events
is determined by the conditional intensity function (CIF). Us-
ing the notation in [9], we define the CIF as

AtH) =p+a Y y(t—T), (1)

TREH:

where H; = {7 : 7 < t} denotes the history of the pro-
cess at time ¢ (i.e., the set of all events occurring before time
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t). The term p corresponds to the base intensity, a is the co-
efficient of excitation, and (¢ — 73) is the kernel modeling
the influence of an event at time 7. Typically, we observe a
sequence of events {71, ..., 7k } and will be interested in es-
timating the parameters p and a based on these observations.

In the multidimensional case we may have an ensemble
of N point processes that influence each other. In this setting,
the CIF for each subprocess can be defined as

N
N(H) =i+ ai; > At—m), Q)

Jj=1 TREH:,j

where p = [p1;] with pi; being the base intensity of the it"
subprocess, A = [a; ;] is the “infectivity matrix” where a; ;
is a positive quantity describing the influence of the j* sub-
process on the i*" subprocess and H; ; is the subset of the
history #; containing events belonging to the j* subprocess.
In this case every event is associated not only with a time of
occurrence (7y) but also a “mark” 0, € {1,..., N} that in-
dicates which subprocess the event is associated with. Using
this notation, we can write H; ; = {7 : 7, <t,0, = j}.
Note that these models assume that the underlying param-
eterization of the system is constant. We are chiefly interested
in the case where the dynamics of the system — corresponding
to the model parameters p and A — are changing with time.
In such settings we must consider more sophisticated models.

2.2. Related work

While state-dependent parameterizations have been studied
for traditional Poisson processes (e.g., see [14]), the vast
majority of prior work in the field of Hawkes processes as-
sumes a static parameterization. A notable exception is the
work of [11] which considers Hawkes processes that change
parameterizations according to an underlying Markov model
characterizing the state transitions. The state information
is assumed to be unknown and not directly observable, and
thus [11] aims to estimate both the state transition probabili-
ties and process intensity parameters using a hidden Markov
model (HMM) to model the underlying states. To simplify
the inference process, [11] considers only univariate Hawkes
processes with a kernel that is piecewise constant between
events. This approach was recently extended to more general
kernels in [15].

The more recent work of [12] is perhaps the most similar
to ours. The authors consider a state-dependent Hawkes pro-
cess consisting of a multivariate Hawkes process that is cou-
pled with an observable Markov chain governed state process.
The assumption in this work is that state transitions are trig-
gered by events in the Hawkes process according to a Markov
transition matrix that depends on which subprocess the event
belongs to. This structure is motivated by the application to
limit order books and ensures an efficient parameterization.
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3. SWITCHED HAWKES PROCESSES

We now introduce our switched Hawkes process model in
which the process switches among a known finite number
of states, where each state is characterized by a different
multidimensional Hawkes process. Specifically, let an N-
dimensional process of order M denote a process with N
subprocesses and M states. In this setting, the CIF for the i*
subprocess in the st" state can be defined as

N M

)\i,s(ﬂHt) = Mi,s + Z Z(az}s)j,s’ Z V(t - Tk)7 (3)
j=1s'=1 TREH ;o

where gt = [p; ] with y; s being the base intensity of the it"

subprocess, A = [(a;5);,s] is the infectivity matrix where
(ai,s);,s represents the influence of events belonging to the
4" subprocess that occurred when the system was in state s’
on the 7" subprocess when the system is in state s. Here,
H:,;,«» now denotes the subset of H; defined as

Migr = {7 : 7k <t,0p = j, s, = '} )

where we assume that each event 7, is accompanied by an
additional mark s that indicates the corresponding state of
the system.

Maximum likelihood estimation has been commonly used
for parameter estimation in Hawkes processes [16, 17]. We
develop an extension of this procedure to estimate p and A in
a switched process. Suppose that we observe the sequence of
events {(71,01,51),...,(Tk, 0K, 5K)} on [0,T). The likeli-
hood of these events is given by

(N‘vAl,HT (H )\Gk Sk Tk > €xXp <_/0 )‘(t)dt>

®)

A =22 Ais(h) 6)

(Here \; 5(t) is used to denote the CIF instead of \; ,(t|#:)
and, for brevity, we will follow this notation henceforth.)

Considering the negative logarithm of the likelihood leads
us to a convenient separable form as below.

where

N M
L(p, AHr) = ZZ Lis(m, AlHr) (7)

where

T
Lo o(, AlH) = / Nsdt— 37 log A (m).
0

TREHT i,s
3
Since every A; 4(t) depends only on f4i,s and the sub-matrix
A;s = [(ais)js forj=1:Nands =1:M], each of



L; s(w, A|H7) can be optimized independently for M N + 1
parameters instead of the composite £(p, A|H7) involving
MN(MN + 1) parameters. The parameters are estimated
via (8) which is a convex optimization problem that can be
solved using a quasi-Newton method as described in [9].

Unlike the prior works discussed above, our model makes
no assumptions on the nature of the state process or any re-
lation between the state process and the event process. We
instead assume that we have implicit knowledge of the states
and state transition times (which could be arbitrary). While
some previous works consider the joint estimation of the state
and event processes under specific modeling assumptions on
the state transitions, this often involves elaborate computa-
tions. We instead provide a simple method for estimating the
parameters when given knowledge of the state information. In
cases where the dynamics are known or are relatively simpler
to estimate via some form of side information, this can lead to
a much simpler inference process. As an example, in the case
of data from traffic sensors, information about the configu-
ration of the traffic lights might be available. Similarly, if we
consider the situation of estimating the firing rates of neurons,
the underlying brain states (sleep vs awake) might be easy to
estimate. In the latter case, our method can be modified to es-
timate switched variants of Poisson processes (which are pop-
ularly used to model neuron firings) [18]. We also note that
our approach extends very naturally to multivariate Hawkes
processes and can accommodate arbitrary kernels.

4. SIMULATIONS

To illustrate the concept of a switched Hawkes system, we
simulate a simple model of a two-dimensional Hawkes pro-
cess of order 2. The event occurrence times are generated
according to the thinning method [19], considering the CIFs
corresponding to the underlying state. The marks indicating
which subprocess the events belong to, are generated accord-
ing to the state-dependent mark distribution function. We use
an exponential decaying kernel for (¢). The data generated
by this model is illustrated in Figure 1.

We are interested in understanding the differences be-
tween the inference drawn by the multivariate model and the
switched model on such data. Towards this end, we estimate
parameters for both the models on a data simulated using the
switched model. This model is of a similar structure to the
system in Figure 1. The parameters used are

= = ] =] iy

with (A1) and (Az)q setto 0. Here o, = [p;,s fori =1: N]|
and (As)y = [(a;6)j fori=1:Nandj=1:N].

We use the constraint of no self-excitation while estimat-
ing the arameters in both the models. The multivariate model
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Fig. 1. Simulation of a two dimensional switched Hawkes process
of order two. This figure represents the CIF of the two subprocesses
in the two states. The vertical line at t = 45s represents a state tran-
sition. The red circles indicate the event occurrence times. State 1
is characterized by innovations at node 1 and excitations at node 2.
We can observe that every event of the first subprocess leads to an
increase in the CIF of the other subprocess, and vice versa in state 2.

learns a single set of parameters of the system with
0.68 0 0.28
H= {0.53} A= {0.46 0 } '
This is equivalent to learning a model that captures the av-
erage performance of the system in both the states. The
switched model more accurately estimates parameters that

clearly indicate the differing dynamics of the two states of the
system. In this case, the parameters learnt are

1.00 0
Hi=1 9 H2 =1 07

o=ty ] w0

with (A1) and (As); being equal to 0.

5. APPLICATION TO TRAFFIC SENSOR DATASET

In this section we consider a real-world traffic sensor dataset
which consists of time-stamped events representing the pas-
sage of a vehicle over a sensor. In the subset of the dataset
that we consider here, there are 16 sensors placed at dif-
ferent lanes in the 4 legs of an intersection as illustrated in
Figure 2. The traffic lights at the intersection switch among
6 different configurations. The section of the data used for
our experiments consists of sensor observations collected
over a duration of two hours, consisting of approximately
8000 events in total. Accordingly we use a 16 dimensional
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Fig. 2. Depiction of one of the states in the traffic dataset. Each of
the small squares indicates a sensor placed in the corresponding lane
with the ones having arrows in front of them being inbound sensors
and the rest outbound sensors. The arrows represent the direction
of traffic flow through the corresponding lanes. The shaded sensors
along with the shaded arrow marks indicate the sensors that are ac-
tive and the existing connections.

switched Hawkes process of order 6 to model the data. By
applying our model to this dataset, we aim to learn the con-
nections between the events at inbound sensors and those at
outbound sensors, thereby obtaining estimates of which are
the dominant traffic flows through the intersection.

An example state is as represented in Figure 2. In our
inference, we use the constraint of no self-excitation since a
vehicle passing over a sensor does not pass the same sensor
again. For this state, the 7 most significant values in the cor-
responding infectivity matrix includes the 5 connections one
would expect to observe in this state, i.e., 5-16, 6-4, 7-4, 7-12,
and 15-8.

We also estimate a multivariate Hawkes process for this
data and investigate which of the two models better ex-
plains the data. According to the theorem of random time
change [20], for a point process with intensity A(¢) and
event times {7y }}_,, the rescaled inter-arrival times given by
{J*  A(#)dt}p_, form a sequence of exponential random
variables with unit rate. Accordingly, for an N-dimensional
Hawkes process, the integrated intensities for each of the
subprocesses form N independent sequences of i.i.d. expo-
nential random variables with unit rate. Similarly, for an
N-dimensional switched Hawkes process of order M, they
form M N independent sequences [12]. In Figure 3, we com-
pare the empirical quantiles for both the models with the
theoretical quantiles for the unit rate exponential distribution,
known as a QQ-plot. The closer the QQ-plot is to the refer-
ence line (slope = 1), the better the model matches the true
distribution of the data. We observe that the switched model
is a far better fit compared to the multivariate model.
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Fig. 3. Representative QQ-plots for the parameters learnt on the
traffic dataset.

We note that this data is relatively noisy with the observed
sensor events not being strictly in accordance with traffic sig-
nal information. Nevertheless, our model is robust enough to
pick the strong connections and resolve the causality between
the inbound and outbound sensors. In some cases the model
also estimates spurious influences between adjacent sensors.
To avoid such false connections, we can use the constraint of
no influence among sensors in adjacent lanes and the knowl-
edge of inbound-outbound orientations in addition to the con-
straint of no self-excitation. The results obtained with these
additional constraints often exhibit substantial improvements.

6. CONCLUSION

In this paper we have proposed an extension of the traditional
multidimensional Hawkes process to a switched Hawkes
process that can adapt based on dynamically changing state
information. We consider a simple maximum likelihood esti-
mation approach to fitting the model parameters and demon-
strate the effectiveness of this approach on both synthetic
simulations and real-world experiments. In the process,
we also demonstrate the ineffectiveness of traditional (non-
state-aware) Hawkes processes compared to our proposed
approach. From our experiments, we conclude that our pro-
posed approach is also a promising direction for obtaining
improved stochastic models for multivariate Poisson pro-
cesses in which the events are correlated and state-dependent.
In the future, we hope to further explore the use of these
techniques in the context of predicting future traffic behavior
in a network and in modeling state-dependent neural activity.
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