
Approximating Cellular Densities from High-Resolution Neuroanatomical Imaging Data

Theodore J. LaGrow1, Student Member, IEEE, Michael G. Moore1, Student Member, IEEE,
Judy A. Prasad2, Mark A. Davenport1, Senior Member, IEEE, Eva L. Dyer1,3, Member, IEEE

Abstract— Characterizing the cellular architecture (cytoar-
chitecture) of tissues in the nervous system is critical for mod-
eling disease progression, defining boundaries between brain
regions, and informing models of neural information processing.
Extracting this information from anatomical data requires the
expertise of trained neuroanatomists, and is a challenging task
for inexperienced analysts. To address this need, we present
an unbiased, automated method to estimate cellular density
of retinal and neocortical datasets. Our approach leverages
the fact that within retinal and neurocortical datasets, cells
are organized into “layers” of constant density to approximate
cytoarchitecture with a small number of known basis elements.
We introduce methods for patch extraction, cell detection, and
sparse approximation of inhomogeneous Poisson processes to
differentiate changes in cellular densities and detect layers. Our
results demonstrate the feasibility of using automation to reveal
the cytoarchitecture of large-scale biological samples.

I. INTRODUCTION
Mapping the cellular architecture, or cytoarchitecture, within
the nervous system is the first step in identifying the origin
of tissue samples, performing comparative neuroanatomy,
and modeling neurological disease states. A key step in
delineating neural cytoarchitecture and mesoscale brain map-
ping involves the identification of “layers”, or regions within
the sample where cellular density is approximately ho-
mogeneous. The cerebral cortex is a key brain region in
which six layers have been identified and thoroughly studied
[1]. Identifying layers is also integral to studying retinitis
pigmentosa (RP), a family of retinal degeneration diseases
in which the width and density of retinal layers is indicative
of the stage of the disease [2].

Characterizing cytoarchitectural boundaries presently re-
lies on trained neuroanatomists to manually annotate pho-
tomicrographs [3]. As neuroscience datasets scale upwards,
having a human visually define structures becomes inef-
ficient, impractical, and risks skewed data. It is therefore
imperative that automated quantification be integrated into
experimental and diagnostic methods to ensure large datasets
are analyzed in an unbiased manner.

In the following paper, we introduce a method for Ap-
proximating Cellular Densities (ArCaDe), which estimates
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the spatially-varying density of cells within high-resolution
neuroanatomical images. To provide robust estimates of cell
densities that also reveal layer transitions, we developed
an approach for sparse approximation from count data that
estimates the density function with a total-variation (TV)
approach [4]. The main idea behind our method is to estimate
a density function that confirms the cellular count data while
also minimizing the total variation of the estimated density.
We additionally provide supporting methods to perform
extraction of image patches and cell detection that allow
efficient estimation of layering structure.

We applied ArCaDe to synthetic data, as well as image
datasets from visual and somatosensory cortex [5] and from
retinal samples from a rd10 mouse model [2]. In each
case, we demonstrated that ArCaDe is able to achieve high
accuracy of cell counts and estimate the underlying density
effectively. Our approach for estimating cellular density
exploits known structure in the density function to achieve
higher stability and robustness to noise.

By combining computer vision methods for cell detection
[6] with state-of-the-art methods density estimation [7], we
were able to provide an end-to-end tool for estimating cy-
toarchitecture from neuroanatomical data. Furthermore, our
method can be applied to a variety of imaging datasets with
minimal re-training. We show that quantitative estimates of
neural densities can be obtained with high accuracy, leading
to new models of brain organization and tools for comparing
brains across disease conditions.

II. CYTOARCHITECTURE APPROXIMATION

Our approach for Approximating Cellular Densities (Ar-
CaDe) consists of three main steps (Fig. 1). The first step
of the method extracts patches from the image that run
perpendicular to the surface of the sample to reveal the
layering structure within the tissue. The second step detects
cells within the image and produces cell counts for each
extracted patch. The last step of the method approximates the
spatially-varying density of cells using a TV-minimization
approach. As a result of using ArCaDe, we can produce a
spatially varying map of the density and width within each
layer of the tissue sample. We provide MATLAB code and
a demo at github.com/nerdslab/arcade.

A. Step 1: Patch Extraction

The first step of ArCaDe extracts small patches from the
image data that run perpendicular to the surface of the sample
(Fig. 1A). The cellular layers of both cortex and retina run
parallel to the surface of the tissue, so when cutting through
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Fig. 1. Overview of the Approximating Cellular Densities (ArCaDe) method. (A) A Nissl image of somatosensory cortex from the Allen Institute’s
Reference Atlas [5] with exemplar patches overlaid. (B) A demonstration of the fitted polynomial around the membrane of the cortex in the presence of
noise. (C) From top to bottom: A patch from the image to visualize the cellular distribution from the top (pia) to the bottom of the cortex (Layer 6). The
red lines indicate the transitions between layers as identified by a trained neuroanatomist. Below, detected cell bodies in red overlaid on the same image
patch. Finally, the estimated density function obtained with our TV-minimization approach.

the sample perpendicular to the surface, we observe sharp
transitions in cell density.

To extract patches, we begin by identifying the surface of
the sample by thresholding the image data and performing
a connected components analysis to produce a binary image
with the tissue sample labeled as ones and the rest of the
image labeled as zeros. Next, we compute the 2D gradient
of the binary image to estimate the membrane (surface)
outlining the tissue sample. We fit a polynomial function of
even order to account for noise around the surface (Fig. 1B).
The directions of the tangent and the normal are computed
for each smoothed boundary pixel. Using a designated patch
width and a patch length, we can extract the patch producing
a matrix of pixel values for the region of interest orthogonal
to the surface of the structure.

B. Step 2: Cell Detection Method

The second step of ArCaDe converts image data into cell
counts. We developed an approach for cell detection from
2D histology images by adapting a cell detection method
developed for 3D neuroanatomy data [6].

1) Computing Class Probabilities: To convert image data
into cell counts, we start by producing probability maps of
encoded pixels of either cells (ones) or background (zeros)
in either a supervised or an unsupervised approach. For our
supervised approach, we train a random forest classifier to
distinguish cells from their background using an interac-
tive segmentation tool called ilastik [8], a general-purpose
framework that requires the user to input a small amount of
training data to identify cells and background in the image.
For our unsupervised approach, we use a Gaussian Mixture
Model (GMM) to estimate the probability that a pixel in the
image corresponds to the foreground (e.g. stained cells) or
background [9]. The probability maps that result from either
our supervised or unsupervised strategy are then input into
our cell detection method to generate accurate cell counts.

2) Iterative Cell Detection: After obtaining probability
maps from the image data, we then apply a greedy sparse
recovery approach to iteratively select circular objects (cell
bodies) of a fixed size from the probability map. The
algorithm begins by thresholding the probability map and
then convolving the thresholded probabilities with a circular
template to find the point in the map with maximum corre-
lation. After finding the point maximally correlated with the
template, a small window is removed around the matching
pixel to zero out the probability map at this point in space.
The method iteratively finds more cells until a stopping
criterion (i.e., when the correlation is less than a threshold)
is satisfied. The output of the cell detection method contains
the center of all detected cells within the image (Fig. 2).
This cell detection method provides an automated approach
to convert a histological image (e.g., Nissl stained brain slice)
into a collection of cell counts to be incorporated into our
density estimation method.

3) Model Selection: To apply our cell detection method
to large images, we created a method which divides the
image data into smaller blocks, runs the cell detection in
parallel, and then merges the estimates. Additionally, we
implemented a hyper-parameter optimization method that
uses ground truth data to tune the hyper-parameters used
in the cell detection step. These parameters include: the
threshold applied to the probability map, size of template,
size of circular window used when removing a cell from the
probability map, and the stopping criterion.

C. Step 3: Poisson Density Estimation

After obtaining cell counts from each image patch, the next
step is to obtain a density function that approximates the
count data. We leverage the fact that the layering structure of
neural tissue can be modeled by a piecewise-constant density
function. Thus we can use sparse approximation techniques
in conjunction with maximum likelihood estimation (MLE)
to find efficient representations of cellular densities.
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Fig. 2. Cell detection results on cortical and retinal datasets. (A) A Nissl-
stained visual cortex image from the Allen Institute’s Reference Atlas [5],
computed probability maps, and detected cells overlaid on the probability
map (red circles) at 1.6x zoom (top row) and 12x zoom (bottom row). (B)
Cell detection results overlaid on a retinal sample in a rd10 mouse (each
detected cell is displayed as a different color).

1) Density Estimation for Inhomogeneous Poisson Pro-
cesses: To model the cell density in a patch of tissue as a
function of the depth, we start by binning the space into M
disjoint depth intervals and model the number of cells in each
bin as a Poisson random variable, where zm ∼ Poisson(Rm)
denotes the number of cells observed in the mth bin and
Rm denotes the density (rate) of the mth bin. We focus
on a linear model where the density can be expressed as a
linear combination of elements from a known basis A as
R

(x)
m = [Ax]m, where A is a M × N matrix containing

N basis elements each of M dimensions and x ∈ RN .
Under this model, the negative log-likelihood of observing
z is given by

L(x|z) = 1TAx− zT log(Ax),

where z = [z1, . . . , zM ] contains the number of cells in each
bin and the logarithm is applied element-wise to Ax.

2) Sparse Maximum Likelihood Estimation: Estimating
the density function R(x)

m typically involves solving a MLE
problem to find the parameters x that best match the counts
z. However, when dealing with noisy biological data, ap-
plying additional regularization to our estimation problem
helps to mitigate overfitting. In this case, rather than using a
standard MLE approach, we leverage additional structure in
our cell density estimation problem.

In particular, we can model the distribution of cells across
cortical and retinal samples as a piecewise-constant function,
where each layer is assumed to have nearly constant density
[1]. In most cases, we have strong prior information about
the specific number of layers and that the number of layers K
is small relative to the number of bins M used to discretize

Algorithm 1 Poisson MLE with transform-sparse penalty
Require: x : Ax ≥ 0, ε ≥ 0, α > 0

repeat
V = diag(Ax+ ε)−1A
Λ = diag(|Dx|+ ε)−1

f = g − V Tz + λDTΛDx – majorizer gradient
H = V T diag(z)V + λDTΛD – majorizer Hessian
α = α/4
repeat
α = 2α
y = x− (H + αI)−1f – regularized Newton step

until Ay ≥ 0
x = y

until converged

the sample, i.e., K �M .
Using this information, we can thus pose our density

estimation problem as the following convex optimization
problem:

argmin
x

L(x|z) + λ‖x‖TV , (1)

where ‖x‖TV =
∑

m |xm+1−xm| is referred to as the “total
variation” norm [4] and the regularization parameter λ is set
to achieve a certain sparsity level based upon the number of
layers that we expect in a sample. In our specific application,
we will choose A to be a diagonal matrix; however, our
approach can be used for other choices of bases without
modification. In essence, the TV-norm penalizes the number
of transitions in the density estimate and thus favors density
functions that are piecewise-constant.

3) Algorithm: An algorithm for solving (1) is pre-
sented in Algorithm 1. This algorithm uses a majorization-
minimization strategy and employs the majorizer

‖x‖TV ≤
1

2
‖Λ1/2

(Dx′)Dx‖22 +
1

2
Tr(Λ−1

(Dx′))

with [Dx]m = [x]m+1 − [x]m and diagonal matrix [Λ(y)]
with diagonal entries equal to [Λ(y)]mm = |ym|−1. Using
this majorizer allows us to solve our optimization problem
with smooth gradients, sidestepping the non-differentiability
of the `1-norm. The parameter ε is chosen to be small (but
non-zero) to condition the majorization, preventing singular-
ities but otherwise having a negligible effect on the solution.
The scale factor α is automatically kept in a moderate range
to ensure that the iterations are feasible and the Hessian
is nonsingular. Since A and D are banded matrices, the
Hessian (H) is also banded and the linear system (H +
αI)−1f in Algorithm 1 can be solved efficiently.

4) Model Selection: In order to find an appropriate value
of the regularization parameter λ, we implemented an itera-
tive method which solves (1) using Algorithm 1 for a fixed
value of λ, computes the sparsity (number of non-zeros) of
the solution vector x, increases λ, and uses the previous
solution as a warm start for the next iteration. This repeats
until an appropriate amount of regularization is applied to
achieve a fixed sparsity level. This iterative approach allows
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Fig. 3. Evaluation of cytoarchitecture estimation approach. (A) Synthetic examples of density estimation in noisy data modeled from visual cortex (left)
and somatosensory cortex (right). From top to bottom, average density estimate and sparse layer transitions as measured by the total-variation norm (50
trials). (B) Results of density estimation for a patch of cortical data (left) and retinal data (right). From top to bottom: an extracted image patch with
annotated layer transitions in red, density estimates, and sparse layer transitions as measured by the TV-norm.

us to achieve a sparsity level which can be set to identify a
specific number of layers in the sample.

III. RESULTS
To demonstrate the efficacy of our method, we started by
testing our cell detection and patch extraction methods on
patches from two biological datasets. The first dataset was
obtained from a Nissl-stained visual cortical section from
the Allen Institute’s Reference Atlas (Fig. 2A) and the
second sample was obtained from a retinal tissue section
stained with toluidine blue (Fig. 2B); both staining methods
highlight the layer-specific regions within each sample. This
retinal dataset was obtained from the rd10 strain of mice, an
accepted animal model of RP (retinal degeneration) [2]. Our
evaluations were selected to test the utility of our method on
diverse image datasets.

To test our cell detection methods, we obtained ground
truth estimates of all cell positions within a segment of
an image obtained from the Allen Institute’s Reference
Atlas using ITK-Snap [10]. We used this information to
perform a hyper-parameter optimization, resulting in a f1-
score (harmonic mean of precision and recall) of 0.9031
for the supervised method (random forest classifier) and
0.9251 for the unsupervised method (GMM). To test our cell
detection method on the retinal sample, we trained a classifier
to recognize cells of two different sizes and obtained f1-
scores of 0.9787 for cells in the first two layers (ganglion
cells, inner nuclear layer) and 0.8861 for cells in the third
layer (outer nuclear layer) (Fig. 2B). Our results suggest that
ArCaDe can be used to reliably detect cells from both cortical
and retinal datasets.

Next, we sought to demonstrate that our method can reli-
ably estimate cellular densities and reveal layered structure
within each dataset. To achieve this, we created two synthetic
datasets that realistically modeled the biological layering of
the width and densities from primary somatosensory cortex
(S1) and primary visual cortex (V1) [5]. We applied our
density estimation strategy to counts generated from these

density functions (Fig. 3A). Results from the synthetic data
suggest that TV-minimization provides a good approximation
to the underlying density function and estimates of transitions
between layers.

After confirming that our density estimation method can
be successfully applied to synthetic data, we applied our
method to image patches from S1, V1, and retinal samples
(Fig. 3B). We compared these estimates against a more
standard method for density estimation, a kernel density
approach which smooths the count data. Upon comparing our
results to that of annotations from a trained neuroanatomist,
we observed that our method was able to accurately capture
the layering structure from a noisier patch of cortical data
and a patch from the retina. Our results demonstrate that
ArCaDe can automatically distinguish layers from diverse
neural datasets.
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