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Abstract—Compressive sensing provides a framework for re-
covering sparse signals of length N from M � N measurements.
If the measurements contain noise bounded by ε, then standard
algorithms recover sparse signals with error at most Cε. However,
these algorithms perform suboptimally when the measurement
noise is also sparse. This can occur in practice due to shot noise,
malfunctioning hardware, transmission errors, or narrowband
interference. We demonstrate that a simple algorithm, which
we dub Justice Pursuit (JP), can achieve exact recovery from
measurements corrupted with sparse noise. The algorithm han-
dles unbounded errors, has no input parameters, and is easily
implemented via standard recovery techniques.

I. INTRODUCTION

The recently developed compressive sensing (CS) frame-

work enables acquisition of a signal x ∈ R
N from a small set

of M non-adaptive, linear measurements [1, 2]. This process

can be represented as

y = Φx (1)

where Φ is an M × N matrix that models the measurement

system. The hope is that we can design Φ so that x can be

accurately recovered even when M � N . While this is not

possible in general, when x is K-sparse, meaning that it has

only K nonzero entries, it is possible to exactly recover x
using Φ with M = O(K log(N/K)). Signal reconstruction

can be performed using optimization techniques or greedy

algorithms. The broad applicability of this framework has

inspired research that extends the CS framework by proposing

practical implementations for numerous applications, includ-

ing sub-Nyquist sampling systems [3–5], compressive imaging

architectures [6–8], and compressive sensor networks [9].

In practical settings, there may be many sources of noise,

including noise present in the signal x, noise caused by the

measurement hardware, quantization noise, and transmission

errors in the case where the measurements are sent over a

noisy channel. Thus, it is typically more realistic to represent

the measurement process as

y = Φx + e, (2)
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where e is an M × 1 vector that represents noise in the

measurements. It has been shown that it is possible to recon-

struct the signal with �2-error that is at most C0‖e‖2, where

C0 > 1 is a small constant that depends on certain properties

of Φ [10, 11]. Thus, CS systems are stable in the sense that

if the measurement error is bounded, then the reconstruction

error is also bounded.

This is a powerful result for dealing with noise that is

evenly distributed across the measurements, such as i.i.d.

Gaussian, thermal, or quantization noise. However, this is not

representative of some common settings. For example, there

may be short bursts of high noise, or certain measurements

may be invalid because of defective hardware or spikes in

the power supply. When measurements are sent over a net-

work, some measurements may be lost altogether, or in a

sensor network, malfunctioning sensors may regularly transmit

corrupted measurements while the other sensors do not. In

these cases the noise is sparse in the canonical basis. In other

settings, the measurement noise may be sparse or compressible

when represented in some transform basis Ω. For example,

the measurements could be corrupted with 60Hz hum,1 in

which case the noise is sparse in the Fourier basis. Similarly,

measurement noise from a DC bias that changes abruptly

would be piecewise-smooth and thus sparse in a wavelet basis.

In these cases, ‖e‖2 may be extremely large, and thus the

resulting bound C0‖e‖2 on the reconstruction error will also

be large. However, one can hope to do much better. To see

why, suppose that the measurement noise is sparse in the time

domain so that only a few of the measurements are corrupted

with large errors and that the remaining measurements are

noise-free. Standard recovery algorithms will return a signal

estimate x̂ that satisfies only ‖x̂ − x‖2 ≤ C0‖e‖2. However,

if we knew which measurements were corrupted, then we

could simply ignore them. If Φ is generated randomly with

M sufficiently large, and if the locations of the corrupted

measurements were known a priori, then the signal could be

reconstructed exactly by using only the noiseless measure-

ments [12]. The challenge is that it is typically not possible

to know exactly which measurements have been corrupted.

In this paper, we consider a more general version of the

measurement noise model (2), namely

y = Φx + Ωe, (3)

1In some regions hum consists of a 50Hz sinusoid (and its harmonics).
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where Ω is an M × L matrix with L ≤ M orthonormal

columns, and the vector e is sparse. The matrix Ω represents

the basis or subspace in which the noise is sparse; e.g., if the

measurements are corrupted by hum, then Ω is the Fourier

basis. We demonstrate that it is still possible to recover x
exactly when the noise e is sparse via an algorithm we dub

Justice Pursuit (JP), since it is able to accurately identify

corrupted measurements. The JP algorithm, which has been

previously proposed and analyzed in a different context in [13,

14], is described in detail in Section IV. The hallmarks of JP

include:

1) exact recovery of the sparse signal x;

2) exact recovery of the sparse noise term e;

3) blindness to the locations and size of the measurement

errors — thus, the corrupted measurements could be

adversarily selected and the noise on the corrupted mea-

surements can be arbitrarily large;

4) no user-defined parameters;

5) standard CS recovery algorithm implementations can be

trivially modified, i.e., justified, to perform JP, so that

optimized routines can be easily adapted to this setting.

This paper is organized as follows. In Section II, we review

the key results of the CS framework and in Section III we

introduce our algorithm for recovering sparse signals from

corrupted measurements and prove the validity of this al-

gorithm. In Section IV, we demonstrate, via simulation, the

performance of our algorithm. In Section V, we discuss the

implications of these results and propose future work.

II. BACKGROUND

In the CS framework, there are typically two main theoret-

ical questions: (i) What conditions must Φ satisfy to ensure

that the measurement process is well-behaved? and (ii) How

do we recover x from the measurements y? The most common

answer to the first question is the restricted isometry property
(RIP), introduced by Candès and Tao [15]. We say that a

matrix Φ satisfies the RIP of order K if there exists a constant,

δ ∈ (0, 1), such that

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22, (4)

holds for all x and ‖x‖0 := |supp(x)| ≤ K. In words, Φ acts

as an approximate isometry on the set of vectors that are K-

sparse. The RIP has been shown to be a sufficient condition

on Φ to enable exact recovery of sparse signals, as well as

stable recovery from noisy measurements of both sparse and

compressible signals [16].

A key theoretical CS result is that by acquiring only

M = O(K log(N/K)) random measurements (by which

we mean the entries of Φ are generated independently at

random according to a sub-Gaussian distribution), we obtain

a Φ that satisfies the RIP of order 2K [17]. Furthermore,

it has been shown in [12] that the random constructions of

Φ typically advocated in CS are democratic, meaning that

not only does Φ satisfy the RIP, but all sufficiently large

submatrices of Φ satisfy the RIP as well. This provides an

important inspiration for this work, since it suggests that no

matter which measurements are corrupted, the key information

about x is preserved.

We now turn to the problem of recovering x from the mea-

surements y. In the case where the measurements are noise-

free, as in (1), one can use the convex program commonly

known as Basis Pursuit (BP):

x̂ = arg min
x

‖x‖1 s.t. Φx = y. (5)

Provided that Φ satisfies the RIP of order 2K with δ ≤ √2−1,

BP is guaranteed to recover x exactly [16]. In the case where

our measurements are contaminated with noise, as in (2), we

can no longer expect to be able to recover x exactly in general.

However, Basis Pursuit De-Noising (BPDN)

x̂ = arg min
x

‖x‖1 s.t. ‖Φx− y‖2 ≤ ε (6)

will yield a recovered signal x̂ that satisfies ‖x̂− x‖2 ≤ C0ε
provided that ‖e‖2 ≤ ε, where C0 > 1 is a constant depending

only on δ [10].

While convex optimization techniques like BP and BPDN

are powerful methods for CS signal recovery, there also exist

a variety of alternative algorithms that are used in practice

and have comparable performance guarantees. Examples in-

clude iterative algorithms such as CoSaMP and iterative hard

thresholding (IHT) [18, 19].

III. EXACT SIGNAL RECOVERY FROM MEASUREMENTS

CORRUPTED BY SPARSE NOISE

Our goal is to design an algorithm that will recover both the

signal and noise vectors by leveraging their sparsity. Towards

this end, suppose that we acquire measurements of the form

in (3) and that ‖x‖0 = K and ‖e‖0 = κ. Note that the

measurements can be expressed in terms of an M × (N + L)
matrix multiplied by a (K + κ)-sparse vector:

Φx + Ωe = [Φ Ω]
[

x
e

]
. (7)

We now introduce our reconstruction program, Justice Pur-
suit (JP):

û = arg min
u
‖u‖1 s.t. [Φ Ω]u = y, (8)

where û is an intermediate (N + L)× 1 recovery vector. The

signal estimate x̂ is obtained by selecting the first N elements

of û, i.e., x̂i = ûi, i = 1, . . . , N . Furthermore, an estimate

of the noise vector ê can be obtained by selecting the last L
elements of û, i.e., êi = ûi+N , i = 1, . . . , L. Note that one

can adapt iterative algorithms such as CoSaMP and iterative

hard thresholding (IHT) by simply replacing Φ with [Φ Ω].
JP is essentially identical to a program proposed in [13, 14].

Note, however, that in [13, 14] the authors consider only Φ that

are composed of a set of highly correlated training vectors

and do not consider this program within the more traditional

context of CS. Indeed, due to our differing assumptions on

Φ, we can demonstrate stronger, nonasymptotic guarantees

on the recovery of x and e provided by JP. The sparse

noise model has also been considered in the context of CS
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in [20], however the authors use a probabilistic approach for

the analysis, a specialized measurement scheme, and propose

a non-convex program with non-linear constraints for signal

recovery, resulting in substantial differences from the results

we present below. Note also that while [15] also considers

the use of �1-minimization to mitigate sparse noise, this is in

the context of error correction coding. In this framework the

signal to be encoded is not necessarily sparse and M > N ,

resulting in a substantially different approach.

While JP is relatively intuitive, it is not clear that it will

necessarily work. In particular, in order to analyze JP using

standard methods, we must show that the matrix [Φ Ω] satisfies

the RIP. We now demonstrate that for random constructions

of Φ with high probability [Φ Ω] will satisfy the RIP for any

Ω. To do so, we first establish the following lemma, which

demonstrates that for any u, if we draw Φ at random, then

‖[Φ Ω]u‖2 is concentrated around ‖u‖2.

Lemma 1. Let Φ by an M×N matrix with elements φij drawn
i.i.d. according to N (0, 1/M) and let Ω be an M ×L matrix
with orthonormal columns. Furthermore, let u ∈ R

N+M be
an arbitrary vector with first N entries denoted by x and last
L entries denoted by e. Let δ ∈ (0, 1) be given. Then the
matrix [Φ Ω] satisfies

E
(‖[Φ Ω]u‖22

)
= ‖u‖22 (9)

and

P
(∣∣‖[Φ Ω]u‖22 − ‖u‖22

∣∣ ≥ 2δ‖u‖22
) ≤ 3e−Mδ2/8. (10)

Proof: We first note that since [Φ Ω]u = Φx + Ωe,

‖[Φ Ω]u‖22 = ‖Φx + Ωe‖22
= (Φx + Ωe)T (Φx + Ωe)

= xT ΦT Φx + 2eT ΩT Φx + eT ΩT Ωe

= ‖Φx‖22 + 2eT ΩT Φx + ‖e‖22. (11)

Since the entries φij are i.i.d. according to N (0, 1/M),
it is straightforward to show that E

(‖Φx‖22
)

= ‖x‖22
(see, for example, [21]). Similarly, one can also show that

2eT ΩT Φx ∼ N (
0, 4‖x‖22‖Ωe‖22/M

)
, since the elements of

Φx are distributed as zero mean Gaussian variables with

variance ‖x‖22/M . Thus, from (11) we have that

E
(‖[Φ Ω]u‖22

)
= ‖x‖22 + ‖e‖22,

and since ‖u‖22 = ‖x‖22 + ‖e‖22, this establishes (9).

We now turn to (10). Using the arguments in [21], one can

show that

P
(∣∣‖Φx‖22 − ‖x‖22

∣∣ ≥ δ‖x‖22
) ≤ 2e−Mδ2/8. (12)

As noted above, 2eT ΩT Φx ∼ N (
0, 4‖x‖22‖Ωe‖22/M

)
. Note

that since the columns of Ω are orthonormal, ‖Ωe‖22 = ‖e‖22.

Hence, we have that

P
(∣∣2eT ΩT Φx

∣∣ ≥ δ‖x‖2‖e‖2
)

= 2Q

(
δ‖x‖2‖e‖2

2‖x‖2‖e‖2/
√

M

)
= 2Q(

√
Mδ/2),

where Q(·) denotes the tail integral of the standard Gaussian

distribution. From (13.48) of [22] we have that

Q(z) ≤ 1
2
e−z2/2

and thus we obtain

P
(∣∣2eT ΩT Φx

∣∣ ≥ δ‖x‖2‖e‖2
) ≤ e−Mδ2/8. (13)

Thus, combining (12) and (13) we obtain that with probability

at least 1− 3e−Mδ2/8 we have that both

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 (14)

and

−δ‖x‖2‖e‖2 ≤ 2eT ΩT Φx ≤ δ‖x‖2‖e‖2. (15)

Using (11), we can combine (14) and (15) to obtain

‖[Φ Ω]u‖22 ≤ (1 + δ)‖x‖22 + δ‖x‖2‖e‖2 + ‖e‖22
≤ (1 + δ)

(‖x‖22 + ‖e‖22
)

+ δ‖x‖2‖e‖2
≤ (1 + δ)‖u‖22 + δ‖u‖22
= (1 + 2δ)‖u‖22,

where the last inequality follows from the fact that

‖x‖2‖e‖2 ≤ ‖u‖2‖u‖2. Similarly, we also have that

‖[Φ Ω]u‖22 ≥ (1− 2δ)‖u‖22,
which establishes (10).

We note that the bound on the cross-term
∣∣2eT ΩT Φx

∣∣
given by (13) is the only part of the proof that relies on the

Gaussianity of φij ; similar results can be shown for the more

general class of sub-Gaussian matrices.
Using Lemma 1, we now demonstrate that the matrix [Φ Ω]

satisfies the RIP provided that M is sufficiently large. This

theorem follows immediately from Lemma 1 by using a proof

identical to that given in [17], so we omit the proof for the

sake of brevity.

Theorem 1. Let Φ by an M × N matrix with elements φi,j

drawn according to N (0, 1/M) and let Ω be an M×L matrix
with orthonormal columns. If

M ≥ C1(K + κ) log
(

N + L

K + κ

)
(16)

then [Φ Ω] satisfies the RIP of order (K +κ) with probability
exceeding 1− 3e−C2M , where C1 and C2 are constants that
depends only on the desired RIP constant δ.

Theorem 1 implies that when both x and e are sparse,

JP recovers both x and e exactly. Thus, even if ‖e‖2 is

unbounded, in this setting JP achieves optimal performance.
In the case where e contains additional sources of noise that

are not sparse, e.g., additive white Gaussian noise (AWGN) or

quantization error in addition to hum, but has norm bounded

by ε, we propose an algorithm we dub Justice Pursuit De-
Noising (JPDN):

û = arg min
u
‖u‖1 s.t. ‖[Φ Ω]u− y‖2 < ε. (17)

The performance guarantees of JPDN are analogous to those

for BPDN, but a detailed analysis of this algorithm is beyond

the scope of this paper.

1558



0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

M/N

A
ve

ra
ge

 E
rr

or

Noise Norm=0.01
Noise Norm=0.2
Noise Norm=0.3
JP
BPDN

0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

M/N

A
ve

ra
ge

 E
rr

or

κ=10
κ=40
κ=70
JP
BPDN

(a) Fixed κ = 10 (b) Fixed ‖e‖2 = 0.1

Fig. 1. Comparison of average reconstruction error ‖x − bx‖2 between JP (solid lines) and BPDN (dashed lines). All trials used parameters
N = 2048 and K = 10. (a) Comparison with fixed κ = 10 and noise norms ‖e‖2 = 0.01, 0.2, and 0.03, depicted by the triangle, circle,
and square-marked lines, respectively. This plot demonstrates that while BPDN never achieves exact reconstruction, JP does. (b) Comparison
with fixed noise norm ‖e‖2 = 0.1 and κ = 10, 40, and 70, depicted by the triangle, circle, and square-marked lines, respectively. This plot
demonstrates that JP performs similarly to BPDN until M is large enough to reconstruct κ noise entries.

IV. SIMULATIONS

A. Average performance comparison

In Figure 1, we compare the average reconstruction error

of JP (solid lines) against the average error of BPDN (dashed

lines). We perform two experiments, each with parameters

N = 2048, K = 10, and ‖x‖2 = 1, with M/N ∈ [0.1, 0.4],
and record the average error ‖x− x̂‖2 over 100 trials.

In the first experiment, depicted in Figure 1(a), we fix

‖e‖0 = κ = 10 and vary ‖e‖2. We use the values

‖e‖2 = 0.01, 0.2, and 0.03, depicted by the triangle, circle,

and square-marked lines, respectively. We observe that the

reconstruction error for BPDN does not decay to zero no

matter how large we set M . Most representative of this is

the dashed line marked by triangles denoting the ‖e‖2 = 0.01
case. As M/N increases, this line reaches a minimum value

greater than zero and does not decay further. In contrast, JP

reaches exact recovery in all tests.

In the second experiment, depicted in Figure 1(b), we fix

‖e‖2 = 0.1 and vary κ. We use the values κ = 10, 40, and

70, depicted by the triangle, circle, and square-marked lines,

respectively. Again, the performance of BPDN does not decay

to zero, and furthermore, the performance does not vary with

κ on average. As expected the error of JP goes to zero and

requires more measurements to do so as κ increases.

B. Reconstruction with hum

In this experiment we study the reconstruction performance

from measurements corrupted by hum, meaning that we add

a 60Hz sinusoid to the measurements. We use a 256 × 256
test image that is compressible in the wavelet domain, set the

measurement ratio to M/N = 0.2, and set the measurement

signal-to-noise ratio (SNR) to 9.3dB, where measurement SNR

in dB is defined as 10 log10(‖Φx‖22/‖e‖22). We recover using

BPDN with ε = ‖e‖2 and using JP with the Fourier basis

for Ω. Note that rather than choosing the entire Fourier basis,

(a) (b)

Fig. 2. Reconstruction of an image from CS measurements that have
been distorted by an additive 60Hz sinusoid (hum). The experimental
parameters are M/N = 0.2 and measurement SNR = 9.3dB. (a)
Reconstruction using BPDN. (b) Reconstruction using JP. Spurious
artifacts due to noise are present in the image in (a) but not in (b).
Significant edge detail is lost in (a) but recovered in (b).

a matrix containing the 60Hz tone and its harmonics can be

chosen to reduce the number of required measurements.

Figure 2(a) depicts the reconstruction from BPDN and

Figure 2(b) depicts the reconstruction from JP. Both images

contain compression artifacts, such as “ringing,” since the

signal is not strictly sparse. However, the BPDN reconstruction

contains spurious artifacts, due not to compression but to

noise, while the JP reconstruction does not. Furthermore,

significant edge detail is lost in the BPDN reconstruction.

C. Measurement denoising

In this experiment2 we use our algorithm to denoise mea-

surements y that have been acquired by the single-pixel cam-

era [6]. The image dimensions are 256×256 and M/N = 0.1.

The denoising procedure is as follows. First we reconstruct the

image using JP with the Fourier basis for Ω. Second, because

2Thanks to Professor Kevin Kelly for providing the data used in this
experiment. More information is available at dsp.rice.edu/cscamera.
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(a) (b)

(c) (d)

Fig. 3. Reconstruction from CS camera data. (a) Reconstruction
from CS camera measurements. (b) Reconstruction from denoised
CS camera measurements. (c) and (d) depict zoomed sections of
(a) and (b), respectively. Noise artifacts are removed without further
smoothing of the underlying image.

the measurement noise is not strictly sparse, we select the

15 largest terms from ê, denoted as ê
′
, and subtract their

contribution from the original measurements, i.e.,

y′ = y − Ωê′.

Third, reconstruction from y′ is performed with BPDN using

the parameter ε = 0.3. To compare, we also reconstruct the

image from the original measurements y using BPDN with the

same ε. In general, this procedure can be performed iteratively,

selecting several spikes from ê at each iteration and subtracting

their contribution from from the measurements.

Figure 3(a) depicts the reconstruction from y and Fig-

ure 3(b) depicts the reconstruction from y′, and Figures

3(c) and 3(d) show a zoomed section of each, respectively.

The reconstruction from the original measurements contains

significantly more spurious artifacts, while the reconstruction

from denoised measurements removes these artifacts without

further smoothing of the underlying image.

V. DISCUSSION

In this paper we have extended the ability of CS to recon-

struct from inaccurate measurements. This was accomplished

by introducing a new reconstruction algorithm, Justice Pursuit

(JP), for sparse signals from CS measurements with sparse

noise. We have proven that JP can recover sparse signals and

sparse noise exactly and derived the number of measurements

required to do so. JP requires no user-defined parameters and

can be easily implemented by extending existing algorithms.

Furthermore, we have demonstrated in simulation that JP can

achieve exact recovery when conventional algorithms cannot

and that JP can improve reconstruction performance from real

data.

There are many topics that have not been fully explored

in this paper. For instance, the noise could be compressible

rather than strictly sparse, or could consist of low energy

noise on all measurements in addition to the sparse noise. For

example, measurements may be subject to both shot noise and

quantization errors simultaneously. Analysis of JPDN and the

related iterative methods explored in Section IV-C as applied

to this problem remain a topic of ongoing work. Additionally,

models can be employed to exploit additional noise structure

and reduce the number of required measurements, or recover

the signal with higher accuracy.
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