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Abstract—Seismic deconvolution is essential for extracting
layer information from noisy seismic data, but it is an ill-posed
problem with nonunique solutions. Inspired by classical optimiza-
tion approaches, model-based deep learning architectures, such
as loop unrolling (LU) methods, unfold the optimization process
into iterative steps and learn gradient updates from data. These
architectures rely on well-defined forward models, but in real seis-
mic deconvolution scenarios, these models are often inaccurate or
unknown. Previous approaches have addressed model uncertainty
by training robust networks, either passively or actively. However,
these methods require a large number of adversarial examples
and diverse data structures, often necessitating retraining for
unseen forward model structures, which is resource-intensive. In
contrast, we propose a more efficient test-time adaptation (TTA)
method for the LU architecture, which refines the forward model
during inference. This approach incorporates physical principles
into the reconstruction process, enabling higher quality results
without the need for costly retraining. The code is available at:
https://github.com/InvProbs/A-adaptive-seis-deconv

Index Terms—Deep learning, loop unrolling (LU), model mis-
match, seismic deconvolution, test-time adaptation (TTA).

I. INTRODUCTION

STIMATING subsurface reflectivity from seismic traces

is a fundamental task in seismic data processing. During
a geophysical survey, a source wave generated by a vibro-
seis truck propagates through the Earth and reflects at layer
boundaries, with the reflected signals recorded by geophones.
These recordings, known as seismic traces, result from the
convolution of the source wavelet with a sparse reflectivity
series that marks impedance contrasts between layers [1]. The
sparsity pattern depends on the subsurface structure and is
generally unknown.

Seismic deconvolution aims to recover the reflectivity
sequence from observed traces by inverting this convo-
lution process [1], [2]. This inverse problem is ill-posed
and nonunique due to measurement noise and the band-
limited nature of the wavelet, which suppresses high-frequency
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components and blurs closely spaced reflectors [3], [4]. For-
mally, the problem is modeled as

y=Ax+e€ (D)

where y € R” is the seismic trace, x € R” is the reflectivity
sequence, A € R"*" is the convolution matrix derived from
the source wavelet, and € is the unknown additive noise.

When the forward model is precisely known, classi-
cal optimization approaches like ISTA [5] and FISTA [6]
solve deconvolution using iterative optimization with sparsity-
promoting regularization. However, these methods are slow
and require careful parameter tuning. Data-driven methods
[71, [8], [9], [10], including U-Net and sparse-promoting net-
works [11] directly learn mapping from traces to reflectivities.
Although efficient, these models ignore the physical forward
model, limiting their robustness and generalization.

Model-based deep learning methods, such as loop unrolling
(LU) architectures [12], unfold iterative optimization into
neural network blocks, explicitly incorporating the forward
model into the recovery process [12], [13]. This results in
interpretable and high-quality reconstructions across tasks like
medical imaging, image deblurring, and compressive sensing
[14], [15], [16], [17], [18], [19], [20], [21], [22]. Recently,
such architectures have gained traction in seismic inversion.
For example, [23] employs {;-based minimax-convex regu-
larization, while other works leverage gradient-based solvers
[24], [25], projected gradient descent [26], and augmented
Lagrangian methods [27]. Untrained unrolled networks have
also been used as deep priors [28]. However, these methods
require accurate knowledge of the forward model during
training and inference, relying on supervised datasets of (x, y,
and A) tuples. As shown in [29], their performance degrades
significantly when the forward model is inaccurate.

In seismic reconstruction, test-time wavelet estimation
errors can introduce forward model inaccuracies, limiting
real-world performance despite precise models used during
training. Existing methods improve robustness by training LU
architectures with adversarial perturbations [30] or learning
model mismatches [29], but these require costly retraining with
carefully designed errors. To address this, we propose a test-
time forward model adaptation for LU architectures trained on
the correct forward model, enhancing reconstruction without
additional training.

Test-time adaptation (TTA) is a learning paradigm that aims
to improve a model’s performance at inference time by adapt-
ing it to the test data distribution, without requiring access
to labeled examples from the target domain during training.
TTA is particularly valuable in scenarios where models are

1558-0571 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 29,2025 at 22:51:14 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0009-0004-2240-8725
https://orcid.org/0000-0002-2633-9761
https://orcid.org/0000-0001-6079-6328
https://orcid.org/0000-0003-0462-7874

7508905

subject to distribution shifts at deployment [31]. By exploiting
the structure of incoming test data, typically through self-
supervised objectives [32] and entropy-based criteria such as
entropy minimization [33], [34], TTA enables models to main-
tain or even improve performance under out-of-distribution
conditions, without retraining or manual annotation. In the
context of seismic deconvolution, our proposed TTA frame-
work offers a promising strategy for enhancing robustness
against forward model mismatches that commonly arise in
real-world applications.

A. Our Contributions

This work proposes a TTA method to address the forward
model, leveraging a pretrained model-based architecture that
is trained using synthetic data with a precisely known forward
model. The proposed approach has the following advantages.

1) Robust to Real-World Data Variability: Synthetic training
data simulates ideal conditions, but real-world data often
deviates. An adaptive approach enables the model to handle
this variability effectively.

2) Cost-Effective: Retraining models with new data is costly.
TTA allows the model to handle new conditions without the
expense of retraining.

II. PROBLEM DESCRIPTION
An estimate of the reflectivity sequence X can be obtained
by solving the following optimization problem:

Lo
& = min Slly - Ax[3 + 7 r(x). 2)

Here, ||y —Ax||§ penalizes the data misfit using current estimate
of x. Furthermore, r : R" — R, is a regularization function.
The choice of the r depends on the prior beliefs of the
underlying signal x and the computational feasibility. For
example, {,-norm encourages minimum norm solutions, while
{p-norm encourages sparse solutions [35]. In addition, v is the
regularization hyper-parameter that is usually well-tuned to
balance the data misfit and the regularization term.

The problem in (2) can be solved via iterative optimization
methods, such as proximal gradient descent, where in each
iteration, the proximal operator of r is applied to the gradient
update of the data misfit term, as shown below

X1 = prox, (& +nAT(y — A%p). 3)

The proximal operator enforces the structure that the reg-
ularization function r attempts to encourage. For simple
regularizers like ¢; and {,, the proximal operators have
closed-form solutions but for general regularizers, closed-
form solutions may not exist. To overcome these challenges
and accelerate optimization, learning-based methods like LU
mimic proximal gradient iterations with trainable parameters,
enabling data-driven, efficient updates.

III. METHODOLOGY

This section reviews related methods and introduces the
proposed LU with test-time forward model adaptation method,
denote as LU-TTA. Trained with an accurate A, LU-TTA
adapts to inaccuracies during real-world inference, ensuring
robust performance.
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A. LU Method

This method [12], [36], [37], [38] unfolds the optimization
problem in (2) into a sequence of iterative steps, with the
regularization updates (i.e., prox) replaced by shared-weights
neural networks. This approach leverages data-driven learning
to achieve more accurate and robust reconstruction results.
Training the proximal LU starts with initializing the input
X0 =y and a fixed number of iterations K. For each iteration
k=1, ...,K, the network updates the estimate by computing
X +nAT(y—Axy), then passed through the learnable proximal
operator to obtain the next refined reconstruction. After K
iterations, the ultimate output Xx is compared to the ground-
truth x for training.

B. A-Adaptive LU Method

At inference time, LU requires an accurate forward model A
to avoid artifacts [14], [29], which may not always be available
in practice. A recent work [29] proposes to use an untrained
neural network to approximate the forward model mismatch
for each data instance along with reconstruction. Assuming the
initial forward model Ay is the Toeplitz matrix formed using
the approximated wavelet wy. The forward model residual
network fp : x — y aims to fix the error due to model mismatch

y =Aox + fo(x) + €

Guan et al. [29] proposed to introduce an auxiliary variable
z, and solve the following optimization instead:

.1
min S{ly = Aoz = fy@I +yr(0) + Tlfo@IZ + Allx = 2. 4)

The third term ensures that the forward model residual is
small, and the last term regulates the difference between the
reconstruction x and the auxiliary variable z. The variables
can be solved iteratively with step size n for time steps k =
1,2,...,K

. 1
21 = argmin Sy = Aoz - Fo. @I + Tl fo, @I
+ Az — 213,
.1 . N A
Or+1 = argmin §||y — Aozt = foCra DI + Tl foGrr I3,
P

Xp1 = prox, (Xx — n(Xx — Zx+1))- ®)

Notice that fy is an untrained network whose weights 6
are updated for each instance along with the reconstruction.
The proximal operator, prox,, is replaced by a neural network
reffered to as the proximal network, which takes the input
Xk — (& — Zk+1) at each iteration. After the final iteration K,
the reconstruction Xx is compared to the ground-truth x, and
only the weights in the proximal network are optimized using
backpropagation.

The method proposed in [29] generates inaccurate forward
models during training to teach the network to correct errors in
the forward model at inference. In contrast, our work builds on
this adaptation approach, demonstrating that an LU network
trained with accurate forward models can still adapt to inac-
curacies during inference. This strategy effectively enhances
the network’s generalization by incorporating forward model
adaptation solely at the evaluation stage.
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C. Proposed Method—LU-TTA

In this work, instead of training LU with deliberately
corrupted forward models, we propose to train the LU in a
standard way with accurate A, and introduce forward model
correction only during inference to reduce training costs.
This significantly reduces training complexity while preserving
robustness. When training LU, the gradient of the least-squares
term in (2) incorporates the forward model and indicates the
update direction to match the noisy trace, and the proximal
network in (2) is a correction term that learns complicated
structures of x. Thus, the learned proximal network can also be
viewed as a task-specific denoising process. Over K iterations,
the same proximal operator is essentially trained to denoise
the reflectivity sequence at different noise levels (larger noise
level with smaller k) and noise patterns (more structured noise
with smaller k). Thus, prior works [29] have observed that
model-based architectures such as LU are more robust and can
generalize better than learning a direct reconstruction network.

Algorithm 1 LU With TTA (LU-TTA)
Load the pre-trained proximal network trained from LU
for each batch of evaluation data (y,Ap) do
Initialize %o =20 = Ajy
Initialize the forward model residual network fj
fork =1,...K do
Update Z, 6, and %, according to (5)
end for
end for

To mitigate the effects of forward model inaccuracies with-
out retraining, the proposed LU-TTA introduces a forward
model correction function f, that refines the estimated for-
ward model during inference. Given the current reconstruction
estimate, f, aims to minimize the second objective function
in (5), where |ly — AoZx+1 — fo(Zx11)ll3 ensures that the cor-
rected forward model aligns with the observed trace, while
||fg(2k+1)||§ prevents excessive modifications to the original
forward model. During inference, the correction function fjy
adapts dynamically for each data instance, enabling LU-TTA
to handle forward model errors without requiring extensive
retraining. Algorithm 1 outline the LU-TTA.

The ability of LU-TTA to adapt to forward model inaccu-
racies during inference stems from the complementary roles
of the learned proximal operator and the forward model
correction function. The proximal network, trained on ideal
forward models, acts as a task-specific denoiser that refines
the reflectivity estimate at each iteration. Since LU implicitly
learns a structured optimization process, the trained proximal
network generalizes well across different noise conditions.
This allows LU-TTA to improve reflectivity sequence estima-
tion even when faced with unseen physical conditions.

IV. EXPERIMENTS AND DISCUSSIONS

In the experiments, we compare the proposed evaluation
scheme with 1) a U-Net that directly learns the deconvolution
process in a supervised manner without utilizing the forward
model and 2) an LU network with DnCNN as the proximal
operator that is trained using the correct forward model. The
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U-Net serves as a baseline where the forward model A does
not explicitly appear in the reconstruction, while the LU
network assumes that A is precisely known during training.
We first validate the proposed approach using synthetic data
with controllable A and further demonstrate its effectiveness
on real seismic data without ground truth. The performance of
the proposed method is evaluated using three different metrics
when the ground-truth data is available: mean-squared error
(mse), correlation coefficient, and reconstruction quality Q.
These metrics measure the discrepancy between the true and
estimated reflectivities.

A. Training on Synthetic Dataset

All networks are trained on the same set of synthetic
data, generated according to the method outlined in [39]. The
2-D data comprises m = 352 traces per shot, each collecting
n = 352 data points per trace along the Earth’s depth,
sampled at 500 Hz. A 40-Hz Ricker wavelet is employed
to generate the observed trace y. Additive white Gaussian
noise is introduced to the data, with a variance of 0.1. Traces
are normalized without mean subtracted to preserve zero
magnitude in reflectivity. The same procedure applies during
inference. While U-Net training is independent of the forward
model A, LU training assumes the correct A as used in data
generation.

B. Evaluation With Known A

While the main goal of this article is to address inaccuracies
in the forward model during evaluation, we first present
baseline results on synthetic data from the training distribu-
tion, assuming a known forward model. We also extend the
evaluation to the Marmousi2 model [40], a widely used bench-
mark for complex seismic processing. This model simulates
a real seismic deconvolution problem, where the impedance
is derived from the density-velocity product, and the true
reflectivity is computed from vertical impedance changes. The
observed traces are generated by convolving a 40-Hz Ricker
wavelet with the reflectivity profile. The first two columns of
Table I show the evaluation results, where LU outperforms
U-Net by leveraging A in iterative refinement.

C. Evaluation on Marmousi2 Model With Inaccurate A

We simulate the multiplicative error in A using the
Marmousi2 model. Multiplicative errors are frequently
encountered in seismic deconvolution, primarily due to uncer-
tainties associated with source wavelets, attenuation effects,
and other environmental factors [41]. We perturb the forward
model by introducing zero-mean random Gaussian noise,
applying both low variance (0.05) and high variance (0.1)
levels to assess the impact of noise on the model’s accuracy.
Furthermore, small noises are added to the measurement
domain to simulate additive noises in seismic exploration
problems. Note that both the multiplicative and additive noise
are treated as unknown during the evaluation, mimicking
real-world scenarios where such errors cannot be precisely
quantified. The two rightmost columns in Table I compare
the Marmousi2 evaluation with inaccurate A. Upon analysis,
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TABLE I

AVERAGE TESTING MSE, ¥, AND Q FOR THE SYNTHETIC DATA WITH ACCURATE A (COLUMN 2), MARMOUSI2 DATASET WITH ACCURATE A (COLUMN
3), MARMOUSI2 DATASET WITH LOW NOSE LEVEL IN A (COLUMN 4), AND MARMOUSI2 DATASET WITH HIGH NOISE LEVEL IN A (COLUMN 5)
USING DIFFERENT METHODS, WHERE THE BEST PERFORMANCES FOR EACH METRIC ARE IN BOLD

Models 2D Synthetic (known A) Marmousi2 (known A) Marmousi2 (low error in A)  Marmousi2 (high error in A)
U-Net 0.001744 / 0.632 / 2.362  0.003162 / 0.721 / 3.543 0.009370 / 0.263 / 0.313 0.009180 / 0.072 / 0.024
LU 0.000991 / 0.815 / 5.110  0.002145 / 0.877 / 7.234 0.008087 / 0.418 / 0.837 0.006193 / 0.264 / 0.315
LU-TTA - - 0.003434 / 0.610 / 2.023 0.003976 / 0.482 / 1.660

Zoomed region

U-Net

05 00 o5

LU-TTA

Fig. 1. Reconstruction results on Marmousi2 synthetic data. From left to
right show a zoomed-in view region, the full model, and a single trace
reconstruction comparison across different methods.

it becomes evident that although the LU method exhibits
greater robustness to multiplicative noise compared to U-Net.
Conversely, LU-TTA demonstrates a significant improvement
in handling these errors. This technique effectively mitigates
the adverse effects of multiplicative noise, resulting in cleaner
and more accurate reconstructions of the seismic data as shown
in Fig. 1.

D. Evaluation on Real Seismic Data

Finally, we evaluate the proposed method on two real-world
datasets: a 2-D landline from East Texas, USA [1], and a line
from Alaska, USA. The Texas dataset contains 18 shots and
594 traces per shot, with each trace consisting of 1501 samples
sampled at 500 Hz. A common midpoint (CMP) gather is
extracted from the raw data, segmented into overlapping
patches, and zero-padded to fit the network input. Missing
traces are muted (zero-filled). The Alaska dataset is sourced
from Line 7X-75 of the National Petroleum Reserve—Alaska
(NPRA) Legacy Data Archive, provided by the USGS (1976),
and includes well-log data for reference.

These real datasets serve as practical benchmarks for eval-
vating the robustness of LU-TTA under realistic seismic
deconvolution scenarios. Unlike synthetic data with known
forward models, real seismic data involves various uncertain-
ties. The true source wavelet is unknown and may include
multiplicative noise in A, structural variations, and attenuation

LU LU-TTA
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Fig. 2. Reconstruction results on real seismic data in Texas. The left shows
the 1-D trace at trace no. 40 (green) with the reconstructed reflectivity (blue)
for each method, while the right presents the 2-D trace and corresponding
reconstructed reflectivity sequences. Notable distortions are marked with red

boxes.
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Fig. 3. Reconstruction results on real seismic data in Alaska. The well-log
data (in black) are shown alongside the reconstructions.

effects. Additional sources of forward model error include sub-
surface heterogeneity, wavelet estimation inaccuracies, sensor
misalignment, acquisition noise, and near-surface scattering.
For evaluation, we estimate the source wavelet using a 40-Hz
Ricker wavelet for both LU and LU-TTA. Fig. 2 shows the
observed traces from Texas, and reconstructions from U-Net,
standard LU, and LU-TTA. The U-Net result, which does
not incorporate the forward model, suffers from a noticeable
quality drop due to distribution shift, making true reflectivity
hard to distinguish from artifacts. Standard LU, while lever-
aging A, cannot adapt to its inaccuracies, leading to residual
artifacts. In contrast, LU-TTA dynamically refines the forward
model at inference, producing cleaner, sparser reconstructions
that better capture geological structures. Fig. 3 shows that
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LU-TTA produces reconstructions on the Alaska dataset that
align more closely with the well-log data than LU alone.
It delivers more accurate and geologically plausible results.
Overall, LU-TTA demonstrates superior adaptability to real-
world model discrepancies, underscoring its practical utility
in seismic exploration.

V. CONCLUSION

We propose LU-TTA to address forward model mis-
match at inference for seismic deconvolution. By combining
a pretrained LU with test-time forward model adaptation,
LU-TTA maintains the efficiency and interpretability of model-
based learning while improving robustness. Unlike traditional
methods requiring inaccurate forward models during train-
ing, LU-TTA is trained with accurate models and adapts
dynamically during evaluation, reducing training costs and
computational overhead. Experiments show that LU-TTA out-
performs conventional LU and deep learning methods on
synthetic benchmarks, the Marmousi2 model, and real seis-
mic data, delivering reliable reconstructions under unknown
forward models.
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