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Abstract

The recently introduced theory of compressed sensing enables the reconstruction of sparse or
compressible signals from a small set of nonadaptive, linear measurements. If properly chosen,
the number of measurements can be much smaller than the number of Nyquist rate samples.
Interestingly, it has been shown that random projections are a satisfactory measurement scheme.
This has inspired the design of physical systems that directly implement similar measurement
schemes. However, despite the intense focus on the reconstruction of signals, many (if not most)
signal processing problems do not require a full reconstruction of the signal – we are often
interested only in solving some sort of detection problem or in the estimation of some function
of the data. In this report, we show that the compressed sensing framework is useful for a
wide range of statistical inference tasks. In particular, we demonstrate how to solve a variety of
signal detection and estimation problems given the measurements without ever reconstructing
the signals themselves. We provide theoretical bounds along with experimental results.

1 Introduction

Over the past decades the amount of data generated by sensing systems has grown from a trickle to
a torrent. This has stimulated a great deal of research in the fields of compression and coding, which
enable compact storage and rapid transmission of large amounts of information. Compression is
possible because we often have considerable a priori information about the signals of interest. For
example, many signals are known to have a sparse representation in some transform basis (Fourier,
DCT, wavelets, etc.) and can be expressed or approximated using a linear combination of only a
small set of basis vectors.
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The traditional approach to compressing a sparse signal is transform coding – we compute
its transform coefficients and then store or transmit the few large coefficients along with their
locations. This is an inherently wasteful process (in terms of both sampling rate and computational
complexity), since it forces the sensor to acquire and process the entire signal even though an exact
representation is not ultimately required. In response, a new framework for simultaneous sensing
and compression has developed recently under the rubric of Compressed Sensing (CS). CS enables
a potentially large reduction in the sampling and computation costs at a sensor. CS builds on
the work of Candès, Romberg, and Tao [1] and Donoho [2], who showed that a signal having a
sparse representation in some basis can be reconstructed from a small set of nonadaptive, linear
measurements. Briefly, this is accomplished by generalizing the notion of a measurement or sample
to mean the application of a linear functional to the data. We can represent this measurement
process in terms of matrix multiplication. In [1, 2] conditions upon this matrix are given that
are sufficient to ensure that we can stably recover the original signal using a tractable algorithm.
Interestingly, it can be shown that with high probability, a matrix drawn at random will meet these
conditions.

CS has many promising applications in signal acquisition, compression, medical imaging, and
sensor networks [1–9]; the random nature of the measurement matrices makes it a particularly in-
triguing universal measurement scheme for settings in which the basis in which the signal is sparse
is unknown by the encoder or multi-signal settings in which distributed, collaborative compression
can be difficult to coordinate across multiple sensors. This has inspired much interest in devel-
oping real-time systems that implement the kind of random measurement techniques prescribed
by the CS theory [10–12]. Along with research into new measurement systems, a variety of re-
construction algorithms have been proposed [1, 2, 13], all of which involve some kind of iterative
optimization procedure, and thus are computationally expensive for long signals with complexity
typically polynomial in the signal length.

While the CS literature has focused almost exclusively on problems in signal reconstruction or
approximation, this is frequently not necessary. For instance, in many signal processing applications
(including most communications and many radar systems), signals are acquired only for the purpose
of making a detection or classification decision. Our aim in this paper is to show that the CS
framework is useful for a much wider range of statistical inference tasks. Tasks such as detection
do not require a reconstruction of the signal, but only require estimates of the relevant sufficient
statistics for the problem at hand. Our key finding is that in many cases it is possible to directly
extract these statistics from a small number of random projections without ever reconstructing
the signal. This work expands on the previous work on detection using compressive measurements
in [14, 15]. We also build upon and draw parallels between the large body of sketching literature
where random or pseudo-random measurement techniques have long been used to estimate various
quantities of large data streams. In particular, our results on the estimation of linear functions of
the data parallel those of [16].

This report is organized as follows. Section 2 provides background on CS and dimensionality
reduction. In Section 3 we analyze some simple signal detection and classification problems, and
demonstrate the effectiveness of the compressive detector on some realistic problems. Section 4
considers the problem of estimating linear functions of the original signal, and studies the perfor-
mance of a simple compressive estimator in this setting. Finally, Section 5 describes the relationship
between our work and previous work on sketching algorithms for large data streams, and Section 6
concludes with directions for future work.

2



2 Concentration of Measure and Compressed Sensing

Let x ∈ RN be a signal and let the matrix Ψ := [ψ1, ψ2, . . . , ψZ ] be a basis for RN . Let ΣK denote
the set of all K-sparse signals, by which we mean that any x ∈ ΣK can be represented as a linear
combination of K vectors from Ψ. We then consider an M×N measurement matrix Φ. A somewhat
surprising result of [2, 17] is that there exist matrices Φ such that every x ∈ ΣK can be recovered
exactly from y = Φx using a simple and computationally tractable algorithm (`1 minimization),
provided that M = O(K log(N/K)) ¿ N . In fact, one can show that we can obtain such a Φ
by simply picking one at random, or equivalently, by selecting a Φ that projects our data onto a
random M -dimensional subspace.

It may seem improbable that we can recover the original signal x exactly from the measurements
y, after all, such inverse problems are generally ill-posed whenever M < N . However, CS recovery
algorithms exploit the additional assumption of sparsity in Ψ to identify the correct signal x from
an uncountable number of possibilities. Specifically, CS recovery is possible because with high
probability, a randomly chosen Φ results in a “stable” embedding of the sparse signal set ΣK in
RM (any two well-separated sparse signals in RN remain well-separated upon projection to RM ).
One way of characterizing this stability is known as the Restricted Isometry Property (RIP); we say
Φ has RIP of order K if for every x ∈ ΣK ,

(1− ε)

√
M

N
≤ ‖Φx‖2

‖x‖2

≤ (1 + ε)

√
M

N
. (1)

For a thorough review of the various results illustrating the role of the RIP in producing a stable
embedding of ΣK , see [18]. One might initially question the existence of matrices satisfying (1),
but in fact a random orthoprojector1 from RN to RM can be shown to meet the RIP of order K
(with respect to any fixed sparsity basis Ψ) with high probability if M = O(K log(N/K)).

In a recent paper [19], we have identified a fundamental connection between the random matrix
constructions of CS and the Johnson-Lindenstrauss (JL) lemma [20–22], which concerns the stable
embedding of a finite set of points under a random dimensionality-reducing projection.

Lemma 2.1 [Johnson-Lindenstrauss] Let S be a finite collection of points in RN . Fix 0 < ε < 1
and β > 0. Let Φ be a random orthoprojector from RN to RM with M < N and

M ≥
(

4 + 2β

ε2/2− ε3/3

)
ln(|S|), (2)

where |S| denotes the number of elements of S. With probability exceeding 1−(|S|)−β, the following
statement holds: For every si, sj ∈ S, i 6= j,

(1− ε)

√
M

N
≤ ‖Φsi − Φsj‖2

‖si − sj‖2

≤ (1 + ε)

√
M

N
. (3)

1By an orthoprojector, we mean an orthogonal projection from RN to RM that can be expressed as an M × N
matrix Φ with orthonormal rows. A random orthoprojector may be constructed, for example, by running the Gram-
Schmidt process on M random length-N vectors having i.i.d. Gaussian entries (assuming the vectors are linearly
independent). We note also that other formulations of the RIP and JL lemma pertain to matrices renormalized
by
p

N/M to ensure that ‖Φx‖2 ≈ (1 ± ε) ‖x‖2. However, we find it useful in this paper to work with random

orthoprojectors and the resulting “compaction” by
p

M/N .
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Without going into complete detail, let us briefly describe how one proves the JL lemma using
such random matrices. First, show that for any x ∈ RN , the random variable ‖Φx‖2

2 has expected
value (M/N)‖x‖2

2; that is,
E(‖Φx‖2

2) = (M/N) ‖x‖2
2 . (4)

Second, show that for any x ∈ RN , the random variable ‖Φx‖2
2 is strongly concentrated about its

expected value; that is,

Pr
(∣∣∣‖Φx‖2

2 − (M/N) ‖x‖2
2

∣∣∣ ≥ ε(M/N) ‖x‖2
2

)
≤ 2e−

M
2

(ε2/2−ε3/3), 0 < ε < 1, (5)

where the probability is taken over all M ×N matrices Φ [22]. To prove the JL lemma one applies
(5) to the

(|S|
2

)
vectors corresponding to all possible interpoint distances. (In the following, it will

be useful to note that if δ ∈ (0, 1) is a fixed value and ε < Cδ/
√

M , where Cδ =
√

12 log(2/δ), then
the right-hand side of (5) is less than δ.)

Let us now mention some examples of distributions that satisfy our concentration inequality
(5). As mentioned above, random orthoprojectors will, but several other types of random matrices
also satisfy (5). The simplest examples are the M × N random matrices Φ whose entries φi,j are
independent realizations of Gaussian random variables

φi,j ∼ N
(

0,
1
N

)
. (6)

One can also use matrices where the entries are independent realizations of ± Bernoulli random
variables

φi,j :=

{
+ 1√

N
with probability 1

2 ,

− 1√
N

with probability 1
2 ,

(7)

and a related distribution yields the matrices

φi,j :=





+
√

3
N with probability 1

6 ,

0 with probability 2
3 ,

−
√

3
N with probability 1

6 .

(8)

As discussed in [22], the verification of (5) in the Gaussian case is elementary (using tail bounds
for Gamma random variables), and the other two cases are verified in [22] using a straightforward
relation to the moments of Gaussian random variables.

At first glance there are several apparent differences between CS (which deals with embedding
an uncountable point set and correctly identifying a signal from its projections) and the JL lemma
(which deals only with embedding a finite number of points and makes no mention of signal re-
covery). However, for the purpose of ensuring a stable CS embedding, ΣK (because of its limited
complexity) can be characterized in terms of a finite number of point samples. By applying the
JL lemma only to these points we can deduce the RIP for all of the remaining points on ΣK ,
which in turn permits stable CS signal recovery [19]. A similar technique has recently been used
to demonstrate that random projections also provide a stable embedding of smooth manifolds [23].
We will now make further use of this connection in the following sections to aid in our analysis of
the performance of the use of compressive measurements in a number of detection and estimation
problems.
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3 Compressed Detection

3.1 The Traditional Detector

We begin by examining the simplest of detection problems. We would like to distinguish between
H0 and H1:

H0 : x = n

H1 : x = s + n

where s ∈ RN is a known signal, and n ∼ N (0, σ2IN ) is i.i.d. Gaussian noise. Next, let

PF = Pr(H1 chosen when H0 true) and
PD = Pr(H1 chosen when H1 true)

denote the false alarm rate and the detection rate respectively. The Neyman-Pearson (NP) detector
is the decision rule that maximizes PD subject to the constraint that PF ≤ α. It is not difficult to
show (see [24,25], for example) that the NP-optimal decision rule is the likelihood ratio test:

Λ(x) =
f1(x)
f0(x)

H1

≷
H0

η

where η is chosen such that

PF =
∫

Λ(x)>η

f0(x)dx = α.

For our hypotheses, H0 and H1, we have

f0(x) = (2πσ2)−
N
2 exp

(
−‖x‖

2
2

2σ2

)
and f1(x) = (2πσ2)−

N
2 exp

(
−‖x− s‖2

2

2σ2

)
.

By taking a logarithm we obtain an equivalent test that simplifies to

t := 〈x, s〉
H1

≷
H0

σ2 log(η) +
1
2
‖s‖2

2 := γ.

It can be shown that t is a sufficient statistic for our detection problem, and thus t contains all the
information required to determine between H0 and H1.

Returning to our detection problem, we must now set γ to achieve the desired performance. It
is easy to show that

t ∼N (0, σ2 ‖s‖2
2) under H0

t ∼N (‖s‖2
2 , σ2 ‖s‖2

2) under H1.

Thus we have

PF =P (t > γ|H0) = Q

(
γ

σ ‖s‖2

)
,

PD =P (t < γ|H1) = Q

(
γ − ‖s‖2

2

σ ‖s‖2

)
,
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where

Q(z) =
∫ ∞

z
exp

(
−u2

2

)
du.

To determine the appropriate value for γ, we set PF = α, which yields

γ = σ ‖s‖2 Q−1(α)

resulting in

PD(α) = Q

(
Q−1(α)− ‖s‖2

σ

)
. (9)

If we define

SNR :=
‖s‖2

2

σ2
(10)

then we can rewrite (9) as
PD(α) = Q

(
Q−1(α)−

√
SNR

)
. (11)

3.2 The Compressive Detector

We now consider the same detection problem as in Section 3.1, but instead of observing x we
observe y = Φx where Φ ∈ RM×N , M ≤ N . Our problem now is to distinguish between H̃0 and
H̃1:

H̃0 : y = Φn

H̃1 : y = Φ(s + n)

where as before, s ∈ RN is a known signal and n ∼ N (0, σ2IN ) is i.i.d. Gaussian noise, and Φ is a
fixed and known measurement matrix. In this case we have

f0(y) =
exp

(−1
2yT (σ2ΦΦT )−1y

)

|σ2ΦΦT | 12 (2π)
N
2

and f1(y) =
exp

(−1
2(y − Φs)T (σ2ΦΦT )−1(y − Φs)

)

|σ2ΦΦT | 12 (2π)
N
2

Again, by taking a logarithm we obtain an equivalent test that simplifies to

yT (ΦΦT )−1Φs
fH1

≷fH0

σ2 log(η) +
1
2
sT ΦT (ΦΦT )−1Φs := γ.

We now define the compressive detector:

t̃ := yT (ΦΦT )−1Φs. (12)

As before, it is easy to show that

t̃ ∼N (0, σ2sT ΦT (ΦΦT )−1Φs) under H̃0

t̃ ∼N (sT ΦT (ΦΦT )−1Φs, σ2sT ΦT (ΦΦT )−1Φs) under H̃1.
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Thus we have

PF =P (t > γ|H0) = Q

(
γ

σ
√

sT ΦT (ΦΦT )−1Φs

)

PD =P (t < γ|H1) = Q

(
γ − sT ΦT (ΦΦT )−1Φs

σ
√

sT ΦT (ΦΦT )−1Φs

)
.

To set the threshold, we set PF = α, and thus

γ = σ
√

sT ΦT (ΦΦT )−1ΦsQ−1(α)

resulting in

PD(α) = Q

(
Q−1(α)−

√
sT ΦT (ΦΦT )−1Φs

σ

)
. (13)

At this point it is worth considering the special case where Φ is an orthoprojector, in which
case ΦΦT = IM , (12) reduces to

t̃ = 〈y, Φs〉, (14)

and we can bound the performance of the compressive detector as follows.

Theorem 3.1 Let Φ be an M ×N random orthoprojector. Then with probability at least 1− δ:

Q
(
Q−1(α)− (1− ε)

√
M/N

√
SNR

)
≤ PD(α) ≤ Q

(
Q−1(α)− (1 + ε)

√
M/N

√
SNR

)
, (15)

where ε < Cδ/
√

M .

Proof: Since Φ is an orthoprojector, we can rewrite (13) as

PD(α) = Q

(
Q−1(α)− ‖Φs‖2

σ

)
. (16)

From (5), if Φ is an orthoprojector selected at random, then with probability at least 1− δ

(1− ε)
√

M/N ‖s‖2 ≤ ‖Φs‖2 ≤ (1 + ε)
√

M/N ‖s‖2 , (17)

where ε < Cδ/
√

M . Combining (16) and (17), and recalling the definition of the SNR from (10)
the result follows. 2

This tells us in a precise way how much information we lose by using random projections rather
than the signal samples themselves, not in terms of our ability to reconstruct the signal as is
typically addressed in CS, but in terms of our ability to solve our detection problem. Specifically,
for typical values of ε, with high probability

PD(α) ≈ Q
(
Q−1(α)−

√
M/N

√
SNR

)
, (18)

which increases the miss probability by an amount determined by the SNR and the ratio of M to
N . Note that it would certainly be possible to design Φ that would not reduce our ability to detect
s at all – in particular, if s lies in the row span of Φ where Φ is an orthoprojector we have that
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Figure 1: Effect of M on PD(α) (SNR = 20dB): For M = .05N we see some degradation in performance.
For M = .1N we have a significant improvement in performance. By M = .2N we are already very close to
the same performance as that of a detector having access to the signal samples themselves.

‖Φs‖2 = ‖s‖2 and thus we lose nothing in terms of our ability to detect s. This makes sense since
the traditional detector can be represented as a linear combination of the rows of Φ, and thus Φ
really is just implementing the traditional detector for s.

In many settings, however, we might be trying to build systems that are useful in the CS setting,
and thus are not able to tailor Φ to the specific s we wish to detect. However, what we lose in
accuracy we gain in universality: we can provide probabilistic performance guarantees regardless
of what s turns out to be. Thus, we can still build systems capable of detecting a signal s that is
unknown at the time we are building the system, without simply resorting to sampling the entire
signal.

Thus, we now return to the case where Φ is a matrix drawn at random. First, we examine how
M affects the performance of the compressive detector. As described above, decreasing M does
cause a degradation in performance. However, as illustrated in Figure 2, in certain cases (relatively
high SNR; 20 dB in this example) the compressive detector can perform almost as well as the
traditional detector with a small fraction of the number of measurements required by traditional
detection. Furthermore, we can characterize the rate at which PD approaches 1 as we increase M
by finding a lower bound on PD. Towards this end, in [26] we find the bound

Q(z) ≤ 1
2

(
1−

√
1− e−z2/2

)
. (19)

From this we can obtain the (very loose) bound

Q(z) ≤ e−z2/2

2
, (20)
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Figure 2: Effect of M on PD at several different SNR levels (α = .1): Note that the rate at which
PD approaches 1 is exponentially fast, but depends on the SNR. The compressive detector can perform
extremely well on just a few measurements when the SNR is high.

which allows us to find a simple lower bound on PD as follows: let C1 = (1− ε)SNR, then:

PD(α) ≥ Q
(
Q−1(α)−

√
M/N

√
C1

)

= 1−Q
(√

M/N
√

C1 −Q−1(α)
)

≥ 1− 1
2
e−

C1M/N−2
√

C1M/N+(Q−1(α))2

2 .

Thus, if we let

C2 =
1
2
e
−Q−1(α)

�
Q−1(α)

2
−√C1

�
(21)

then for all M < N we obtain
PD(α) > 1− C2e

−C1
2N

M . (22)

Thus, for a fixed SNR and signal length, the detection probability approaches 1 exponentially fast
as we increase the number of measurements. This is experimentally confirmed in Figure 2, which
plots the actual performance for a range of SNRs, and in which we see that the detection probability
does indeed approach 1 exponentially fast. However, we again note that in practice this rate can
be significantly affected by the SNR, which determines the constants in the bound of (22).

We also note that while our discussion has been limited to Φ that are orthoprojectors, in practice
this is not necessary. In Figure 3 we have plotted the ROC curve for our detector as predicted by
our above analysis for orthoprojectors along with the median ROC curve (over 100 trials) for three
classes of random matrices: random orthoprojectors, matrices with independent Gaussian entries,
and matrices with independent Bernoulli entries. We observe almost no difference among these
three methods, which all perform very much as expected.

Finally, we close by noting that for any given instance of Φ, its ROC curve may be better or worse
than the curve predicted by (18). However, with high probability it is tightly concentrated around
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Figure 3: Average ROC curves for different methods of generating Φ (SNR = 20 dB, M = .05N): The
methods compared are random orthoprojectors, matrices with independent Gaussian entries, and matrices
with independent Bernoulli entries. The averages are obtained by taking the median ROC curve over 100
independent trials. All agree well with the predicted ROC.

the expected performance curve. Figure 4 illustrates this for the case where Φ has independent
Gaussian entries, M = .05N and N = 104. The predicted ROC curve is illustrated along with
curves displaying the upper and lower bounds found by drawing 100 matrices and plotting the best
and worst ROCs obtained among these. We see that our performance is never significantly different
from what we expect. Furthermore, we have also observed that these bounds grow significantly
tighter as we increase N – so for large problems the difference between the predicted and actual
curves will be insignificant.

3.3 Compressed Classification

We can easily generalize the setting of Section 3.2 to the case where we have more than two
hypotheses. In particular, suppose we have a set S of |S| signals that could be present, and we
would like to select between the corresponding hypotheses:

H̃i : y = Φ(si + n),

for i = 1, 2, . . . , |S|, where each si ∈ S is one of our known signals and as before, n ∼ N (0, σ2IN )
is i.i.d. Gaussian noise and Φ is a known M ×N measurement matrix.

In the case where Φ is an orthoprojector, Φn remains uncorrelated, and thus it is straightforward
to show (see [24,25], for example), in the case where each hypothesis is equally likely, the classifier
with minimum probability of error is to select H̃i where

‖y − Φsi‖2 < ‖y − Φsj‖2

for all j 6= i. Thus, the optimal classifier depends only on the distances from y to the |S| possible
si.
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Figure 4: Concentration of ROC curves for random Φ near the expected ROC (SNR = 20 dB, M = .05N ,
N = 104): In this example Φ has independent Gaussian entries. The predicted ROC curve is illustrated along
with curves displaying the upper and lower bounds found by drawing 100 matrices and plotting the best
and worst ROCs obtained among these. Our performance is never significantly different from the expected
performance.

While in general it is difficult to find analytical expressions for the probability of error in these
kinds of classification settings, we can gain some intuition about the effect of the projection Φ on
the performance of our classifier as follows.

Theorem 3.2 Let Φ be an M ×N random orthoprojector, and let S be a set of |S| signals. Then
with probability at least 1− δ,

(1− ε)
M

N
≤ ‖Φ(x− si)‖2

2

‖x− si‖2
2

≤ (1 + ε)
M

N
, (23)

holds simultaneously for i = 1, 2, . . . , |S|, where ε <
√

(12 log(2|S|/δ))/M .

Proof: By applying the union bound to (5) (in essentially the same fashion as one would to prove
the JL lemma), we get that with probability at least 1− |S|δ′, the following holds simultaneously
for i = 1, 2, . . . , |S|:

(1− ε)
M

N
≤ ‖Φ(x− si)‖2

2

‖x− si‖2
2

≤ (1 + ε)
M

N
, (24)

where ε <
√

(12 log(2/δ′))/M . By setting δ = δ′/|S| the result follows. 2

While this may be viewed as nothing more than a simple application of the JL lemma, we em-
phasize in our treatment that the distances between x and the si shrink (approximately uniformly
over all i) by a factor of

√
M/N , and this compaction cannot simply be ignored away by renor-

malizing Φ. Thus, the distances are not preserved, they are uniformly shrunken. The importance
of this distinction is that if y = Φ(x + n), then because projection to a lower dimensional space
shortens distances, the effect of the noise can be amplified. In particular, if the noise has covariance
matrix σ2IN , then if Φ is an orthoprojector, Φn has covaraince matrix σ2ΦΦT = σ2IM . Thus, a
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small amount of noise that may not impact our classifier in the original N -dimensional space can
become more significant after applying Φ. Clearly, rescaling Φ to avoid this compaction simply
rescales the variance of the noise as well. Thus, just as in detection, the probability of error of our
classifier will increase upon projection to a lower-dimensional space in a way that depends on the
SNR.

4 Compressed Estimation

While many signal processing problems can be reduced to a detection or classification setting, in
some cases we cannot reduce our task to selecting among a finite set of hypotheses. For example,
we may often be interested in estimating some function of the data. In this section we will focus on
estimating a linear function of the data from compressive measurements. Specifically, suppose that
we observe y = Φx and wish to estimate 〈s, x〉 from the measurements y. In the case where Φ is
an orthoprojector, a natural estimator is essentially the same as the compressive deterctor (appro-
priately reweighted to account for the expected compaction of distances by

√
M/N). Specifically,

suppose we have a set S of |S| linear functions we would like to estimate from y, and consider the
estimator:

qi(y) =
N

M
〈y, Φsi〉 , (25)

for i = 1, 2, . . . , |S|.
Once again, we can again use the concentration of measure inequality of (5) to analyze the

performance of this estimator as follows.

Theorem 4.1 Let Φ be an M × N random matrix with entries drawn according to a distribu-
tion satisfying the concentration of measure inequality (5). Let S be a set of |S| points in RN ,
s1, s2, . . . s|S|. Then with probability at least 1− δ,

∣∣∣∣
N

M
〈Φx,Φsi〉 − 〈x, si〉

∣∣∣∣ ≤ κδ
‖x‖2 ‖si‖2√

M
(26)

simultaneously for i = 1, 2, . . . , |S|, where κδ = 2
√

12 log(4|S|+2
δ ).

Proof: We first note that the inequality (26) holds trivially if either ‖x‖2 = 0 or ‖si‖2 = 0, and so
we proceed under the assumption that ‖x‖2 6= 0 and ‖si‖2 6= 0. We now define

u =
x

‖x‖2

and vi =
si

‖si‖2

. (27)

Note that (for all i) ‖vi‖2 = ‖u‖2 = 1, and thus by applying the union bound to (5) we obtain that
with probability at least 1−δ the all three of the following inequalities hold for all i simultaneously:

(1− ε)
M

N
≤ ‖Φu‖2

2 ≤ (1 + ε)
M

N
, (28)

(1− ε)
M

N
≤ ‖Φvi‖2

2 ≤ (1 + ε)
M

N
, (29)

(1− ε)
M

N
≤ ‖Φ(u− vi)‖2

2

‖u− vi‖2
2

≤ (1 + ε)
M

N
, (30)

12



0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M

E
rr

or

Figure 5: Effect of M on the estimation error (N = 105): Predicted bound on error as a function of M .
Note that this decays much more slowly than the probability of error for detection.

where ε < κδ

2
√

M
. Next, we observe that for all i,

(M/N)(1− ε) (2− 2 〈u, vi〉) ≤ ‖Φu‖2
2 − 2 〈Φu,Φvi〉+ ‖Φvi‖2

2 ≤ 2(M/N)(1 + ε)− 2 〈Φu,Φvi〉

where the left-hand inequality follows from the left-hand inequality of (30) and the fact that for
all i, ‖vi‖2 = ‖u‖2 = 1, and the right-hand inequality follows from (28) and (29). Rearranging, we
obtain:

(N/M) 〈Φu,Φvi〉 − 〈u, vi〉 ≤ (1 + ε)− (1− ε)− ε 〈u, vi〉
= (2− 〈u, vi〉)ε
≤ 2ε,

Proceeding similarly using the right-hand side of inequality (30) we obtain the same upper bound
for 〈u, vi〉 − (N/M) 〈Φu,Φvi〉 and thus, with probability at least 1− δ,

∣∣∣∣
N

M
〈Φu,Φvi〉 − 〈u, vi〉

∣∣∣∣ ≤
2κδ

2
√

M
(31)

for i = 1, 2, . . . , |S|. Finally, by substituting back in for u and vi the theorem follows. 2

We offer some brief comments. First, this bound is probably the best we can expect, since
as the norm of either x or si grow, our bound ought to grow as well, and since in the special
case of si = 0 our bound agrees with the fact that our estimate will be exact. Furthermore, note
that the bound grows sub-linearly with the number of functions simultaneously estimated. While
this is good, unfortunately the bound decays relatively slowly as a function of M , as illustrated
in Figure 5. In a certain sense, this illustrates that estimation is a notably harder problem than
detection or classification.
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5 Related Work

Many of the functions we may wish to estimate are quite common. As such, the data streaming
community (which is concerned with processing large streams of data using efficient algorithms)
has analyzed many of them. In this setting one is often interested in estimating some function of
the data stream, (such as an `p norm, a histogram, or a linear function) based on what are often
called sketches, which can often be thought of as random projections. For a concise review of these
results, see [27].

As a particularly relevant example, we note that for the case where |S| = 1, Theorem 4.1 is
essentially the same (up to a constant) as a bound of [16] which uses Φ with 4-wise independent
{+1,−1}-valued entries, yielding the result that with probability at least 1− δ,

∣∣∣∣
1
M
〈Φx,Φs〉 − 〈x, s〉

∣∣∣∣ ≤
2√
δ

‖x‖2 ‖s‖2√
M

. (32)

The proof of this result in [16], while quite elementary, relies heavily on the special structure of
the matrices considered. In light of Theorem 4.1, we can see that this bound actually holds for a
significantly wider class of random matrices, and can be viewed a straightforward consequence of
the same concentration of measure inequality that has proven useful for both compressed sensing
and dimensionality reduction. Furthermore, our approach generalizes naturally to simultaneously
estimating multiple linear functions of the data.

We expect that in the future such parallels between compressed estimation and sketches in data
streaming will provide an avenue for the advancement of both areas.

6 Conclusion

The recently introduced theory of compressed sensing enables the reconstruction of sparse or com-
pressible signals from a small set of nonadaptive, linear measurements. This has inspired the design
of physical systems that directly implement similar measurement schemes. While most research
has focused on the reconstruction of signals – typically relying on the assumption of sparsity –
many (if not most) signal processing problems do not require a full reconstruction of the signal;
we are often interested only in solving some sort of detection problem or in the estimation of some
function of the data. We have shown that compressive measurements can be effective for a variety
of detection, classification, and estimation problems. We have provided theoretical bounds along
with experimental results. Our results place no assumptions on the signals being sparse or com-
pressible. In the future we hope to provide a more detailed analysis of the classification setting and
consider more general models, as well as consider detection, classification, and estimation settings
that utilize more specific models – such as sparsity or manifold structure.
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