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Abstract—There remains a significant gap between the discrete, finite-
dimensional compressive sensing (CS) framework and the problem of
acquiring a continuous-time signal. In this talk, we will discuss how
sparse representations for multiband signals can be incorporated into the
CS framework through the use of Discrete Prolate Spheroidal Sequences
(DPSS’s). DPSS’s form a highly efficient basis for sampled bandlimited
functions; by modulating and merging DPSS bases, one obtains a sparse
representation for sampled multiband signals. We will discuss the use
of DPSS bases for both signal recovery and the cancellation of strong
narrowband interferers from compressive samples.

EXTENDED ABSTRACT

In many respects, the core theory of compressive sensing (CS) is
now well-settled. Given a suitable number of compressive measure-
ments y = Φx of a finite-dimensional vector x, one can recover x
exactly if x can be expressed in some dictionary Ψ as x = Ψα where
α is exactly sparse. If α is not exactly sparse, then one can recover
an approximation to x, and there exist provably efficient and robust
algorithms for performing this recovery.

However, although one of the primary motivations for CS is to
simplify the way that high-bandwidth signals are sampled, there
remains a significant gap between the discrete, finite CS framework
and the problem of acquiring a continuous-time signal. Previous work
has attempted to bridge this gap by employing two very different
strategies. First, in [11] the authors operate directly within the
CS framework by employing the simple (but somewhat unrealistic)
assumption that the analog signal being sampled is comprised of a
sparse linear combination of pure tones with frequencies restricted a
harmonic grid. The advantage of this assumption is that it ensures a
finite-dimensional sparse representation for x if one chooses Ψ to be
the DFT basis. Alternatively, other authors have considered a more
realistic signal model—the class of multiband signals built from sums
of narrowband, bandpass signals—but have performed their analysis
largely outside of the standard CS framework [4, 8].

In this talk, we will discuss how sparse representations for
multiband signals can be incorporated directly into the CS frame-
work through the use of Discrete Prolate Spheroidal Sequences
(DPSS’s) [10]. First introduced by Slepian in 1978, the DPSS’s can
be viewed (and derived) as the discrete-time, finite-length sequences
whose Discrete-Time Fourier Transform (DTFT) is most concentrated
within a given bandwidth. Most significantly, one can show that for
a given sequence of length N and bandlimit W ∈ (0, 1

2
), the first

≈ 2NW DPSS functions form a basis that will capture virtually
all of the energy in any length-N sample vector arising from the
uniform sampling of a bandlimited analog signal. We will expand
upon this fact in our talk and explain how, by modulating DPSS’s
from the baseband to a carrier frequency fc, one obtains a basis
for sample vectors arising from the uniform sampling of bandpass
analog signals. Merging collections of modulated DPSS’s, one then
obtains bases for sample vectors arising from the uniform sampling
of multiband analog signals.

We will discuss the role that such DPSS bases can have in CS. One
natural application is in the recovery of windows of multiband signals
from the sort of compressive measurements that arise in nonuniform
sampling [1] or random demodulation [7] CS architectures. The DPSS
bases enjoy a tremendous advantage over the DFT for this purpose;
while the DFT representation for a multiband signal is not sparse (it
is not even compressible!), the DPSS representation for a multiband
signal is almost perfectly sparse and indeed reflects the fundamental
information level. We will discuss ongoing work in developing DPSS-
based recovery algorithms for CS. Our work on this front differs
from [5, 6, 9] in that we consider discrete-time vectors that arise from
sampling analog signals with arbitrary multiband spectra.

A second application of the DPSS bases in compressive signal
processing involves the cancellation of strong narrowband interferers
from a set of compressive samples. Building on the work in [2,
3], we will explain how such interferers can easily be cancelled by
orthogonalizing a measurement vector against the DPSS subspace,
and we will demonstrate that various signal inference problems can
be solved with a high degree of accuracy after the cancellation of an
interferer many times stronger than the signal itself.
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