Constrained adaptive sensing

Mark A. Davenport and Andrew K. Massimino
School of Electrical and Computer Engineering
Georgia Institute of Technology
Email: {mdav, massimino}@gatech.edu

Deanna Needell
Department of Mathematical Sciences
Claremont McKenna College
Email: dneedell@cmc.edu

Tina Woolf
Institute of Mathematical Sciences
Claremont Graduate University
Email: tina.woolf@cgu.edu

I. ADAPTIVE SENSING

We focus on the problem of estimating a vector $x \in \mathbb{C}^n$ from a small number of noisy linear measurements of the form

$$y_i = \langle a_i, x \rangle + z_i, \quad i = 1, \ldots, m$$

where $\|a_i\|_2 = 1$ and $z_i \sim \mathcal{N}(0, \sigma^2)$. We will typically be interested in the case where the vector x is sparse, meaning that it has only s nonzeros with $s \ll n$. In such a case, one can obtain a significantly more accurate estimate of x by adaptively selecting the a_i based on the previous measurements (compared to the standard nonadaptive approach), provided that the signal-to-noise ratio (SNR) is sufficiently large (e.g., see (4)). In particular, a typical nonadaptive algorithm can produce an estimate \hat{x} satisfying

$$E\|\hat{x} - x\|_2^2 \leq C\frac{n \log n}{m} \sigma^2,$$

where $C > 1$ is a constant. One can show that this is essentially optimal (see (4) for further discussion and references). In contrast, provided that σ^2 is not too large relative to the nonzero entries of x, a well-designed adaptive scheme, where the a_i are chosen sequentially as in (1), (2), will determine the support with high probability and hence has the potential to achieve

$$E\|\hat{x} - x\|_2^2 \leq C' \frac{n}{m} s \sigma^2,$$

which represents a substantial improvement when $s \ll n$.

Given the large potential for improvement over nonadaptive approaches, one would expect adaptive sensing schemes to be quite attractive in practical applications. However, in most applications, there are a number of constraints on what kinds of measurements can actually be acquired. For example, in a number of settings, physical hardware constraints dictate that Fourier coefficients are the only observable measurements. Thus, a natural question is whether adaptive sensing techniques can still be efficiently deployed in scenarios where the practitioner must respect these kinds of constraints. We prove that for certain measurement ensembles, constrained adaptive sensing offers little improvement over standard nonadaptive approaches, no matter how large the SNR. On the other hand, we provide both theoretical and empirical evidence that in other constrained settings, adaptivity can actually be acquired. For example, in a number of settings, physical constraints (e.g., the case of DFT measurements of canonically sparse bases). In other constrained settings it may still be possible to realize significant performance gains via a carefully implemented adaptive scheme. To illustrate this potential, we propose practical algorithms for constrained adaptive sensing and show that these methods exhibit promising performance in a different setting where the signals are sparse in an alternative basis.

III. PRACTICAL POTENTIAL FOR CONSTRAINED SENSING

While Theorem 1 suggests that adaptivity can be of only limited benefit in certain constrained settings, it is important to note that this result applies only to certain specific classes of measurements/sparsifying bases (e.g., the case of DFT measurements of canonically sparse bases). In other constrained settings it may still be possible to realize significant performance gains via a carefully implemented adaptive scheme. To illustrate this potential, we propose practical techniques for addressing these obstacles and evaluate these approaches in settings inspired by tomography, demonstrating significant performance gains over nonadaptive approaches.

As an example, Fig. 1 shows the results of a representative simulation in which DFT measurements are taken of signals which are sparse in a wavelet basis, in particular, whose Haar wavelet decomposition is sparsely supported on a tree. In the nonadaptive case, all measurements are taken without knowledge of the support according to variable density sampling (VDS) (7). In the adaptive case, half of the measurements are taken using VDS and are used to estimate the support with ℓ_1 minimization. The other half are then chosen to optimize recovery error on this support. For comparison, the oracle adaptive error shows the performance when the support is known and all measurements are optimized. We observe that the adaptive algorithm significantly outperforms the nonadaptive algorithm and is competitive with an oracle estimate.

Theorem 1: Suppose that x is s-sparse and that samples are acquired via (1) using m vectors chosen from the rows of the DFT matrix F. Then for any estimate \hat{x} obtained by any adaptive scheme, we have

$$E\|\hat{x} - x\|_2^2 \geq \frac{n}{m} \sigma^2.$$

This shows that even using an optimal choice of sensing vectors, the recovery error is still proportional to $\frac{n}{m} \sigma^2$, which falls far short of the potential gains possible in the unconstrained setting shown in (3). This result is intuitive given the incoherence of the DFT and canonical bases. It is also possible to generalize this result to a somewhat broader class of measurement ensembles. This is somewhat reminiscent of existing results which show (in an unconstrained setting) that for a certain range of worst-case SNRs, adaptive schemes do not result in a substantial improvement in terms of estimation accuracy (3, 5). However, these arguments only apply for a narrow range of SNRs, and if the SNR improves (by only a small constant factor), there is a dramatic transition and adaptivity yields significant improvements (1, 2). In contrast, Theorem 1 applies no matter how large the SNR, and so in a sense is far more pessimistic.
Fig. 1. Simulation results with Fourier measurements, Haar basis tree-sparse signals, $s = 10$, $n = 1024$, $\sigma = 0.01$.

ACKNOWLEDGMENT

M.A.D. and A.K.M. are supported by grants NRL N00173-14-2-C001, AFOSR FA9550-14-1-0342, NSF CCF-1409261 and CCF-1350616, and a gift from LexisNexis Risk Solutions. D.N. was partially supported by NSF Career DMS-1348721 and the Alfred P. Sloan Foundation. T.W. was partially supported by NSF Career DMS-1348721.

REFERENCES