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ABSTRACT

Given a probability law P on d-dimensional Euclidean space, the

minimum volume set (MV-set) with mass β, 0 < β < 1, is the set

with smallest volume enclosing a probability mass of at least β. We

examine the use of support vector machines (SVMs) for estimating

an MV-set from a collection of data points drawn from P , a problem

with applications in clustering and anomaly detection. We investi-

gate both one-class and two-class methods. The two-class approach

reduces the problem to Neyman-Pearson (NP) classification, where

we artificially generate a second class of data points according to a

uniform distribution. The simple approach to generating the uniform

data suffers from the curse of dimensionality. In this paper we (1)

describe the reduction of MV-set estimation to NP classification, (2)

devise improved methods for generating artificial uniform data for

the two-class approach, (3) advocate a new performance measure for

systematic comparison of MV-set algorithms, and (4) establish a set

of benchmark experiments to serve as a point of reference for future

MV-set algorithms. We find that, in general, the two-class method

performs more reliably.

1. INTRODUCTION

In anomaly detection the goal is to identify measurements x ∈ R
d as

being either normal/typical or abnormal/anomalous. We seek a sub-

set of R
d such that points inside the set correspond to typical data

while points outside are anomalies. In practice, it is often the case

that such a set must be “learned” from a collection {xi}
M
i=1 of train-

ing samples gathered under normal conditions. In other words, we

must be able to detect anomalies without knowing what they look

like. For example, in machine fault detection, we would like to pre-

dict when a machine is about to fail, but cannot gather data from a

failed machine because it would entail breaking the machine.

1.1. Minimum volume sets

In this situation one possibility is to estimate a minimum volume set

(MV-set) for the probability measure P governing the typical data.

Specifically, given a known reference measure µ, the MV-set with

mass at least β, β ∈ (0, 1), is

G∗
β = arg min{µ(G) : P (G) ≥ β, G measurable}.

In this paper we focus on the common case where µ is the Lebesgue

measure, although our techniques extend easily to other measures.

The parameter β is chosen by the user and reflects a desired false

alarm rate of 1 − β. MV-sets summarize regions where the mass of

P is most concentrated. For example, if P is a multivariate Gaussian

distribution and µ is the Lebesgue measure, then the MV-sets are el-

lipsoids. See [1–4] and references therein for additional discussion.
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Fig. 1. Estimated minimum volume set for “banana” data (β = 0.9).

Our task is the following: Given a reference measure µ, β ∈

(0, 1), and M realizations of a distribution P , construct a set bGβ

that approximates the true MV-set G∗
β . An example is shown in Fig-

ure 1. In this work we focus on one of the most successful and

widely applied family of learning algorithms, support vector ma-

chines (SVMs).

1.2. One-class methods

Since MV-sets are density level sets [4], with β defining a density

level and vice-versa, an obvious approach to estimating an MV-set is

to estimate the density of P and then compute an appropriate level

set. However, density estimation is a notoriously difficult problem

in the case where we do not have a parametric model for our data,

and in fact these methods typically perform very poorly on real prob-

lems. A better strategy is to avoid estimating the entire density and

only estimate a single level-set. The so-called one-class SVM (OC-

SVM) [3,5] is one of the more powerful methods for doing this. Our

application of the OC-SVM entails carefully setting the free param-

eters to achieve the desired mass/volume tradeoff.

1.3. Two-class methods: Reducing to NP classification

In contrast to the one-class approach described above, a second

approach is to reduce MV-set estimation to Neyman-Pearson (NP)

classification [4, 6]. The advantage of this approach is that almost

any standard classification algorithm can be modified to perform NP

classification. The disadvantage is that this conversion often requires

the introduction of an additional free parameter (to affect the trade-

off between false alarms and misses). We focus on a strategy for NP

classification using SVMs developed in [7].

In classification our training data consist of samples {xi}
N
i=1

together with labels yi ∈ {−1, +1} for each sample. We assume

that when yi = +1, xi is drawn from Q+ and when yi = −1,

xi is drawn from Q−, where Q+ and Q− are unknown probability

measures. In what follows, let f : R
d → {+1,−1} be a classifier,

and let

PF (f) = Q−({x : f(x) = +1}) and

PM (f) = Q+({x : f(x) = −1})
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denote the false alarm and miss rates of f . In NP classification, the

goal is to design a classifier f̂α that minimizes the miss rate while

constraining the false alarm rate to not exceed some user-specified

significance level α. For a more detailed motivation for the Neyman-

Pearson paradigm, see [6].

To estimate the MV-set using NP classification, we can think of

setting Q− = 1 − P and Q+ = µ. In this case the MV-set and

NP classification solutions coincide. Specifically, if α = 1 − β
and f∗

α is the optimal NP classifier, then G∗
β = {x : f∗

α = −1}.

To implement this idea we assign the observed data, {xi}
M
i=1, la-

bels of −1. We then simulate1 a number of points from the refer-

ence measure µ, and assign these points labels of +1. Constraining

PF (f) ≤ α = 1 − β, ensures that the probability mass of the set

where f(x) = −1 is at least β, and since we draw the positively

labeled class from the reference measure µ, minimizing PM (f) is

equivalent to minimizing µ. From this perspective, the reference

measure µ is a prior on the distribution for anomalies. Taking µ to

be the Lebesgue/uniform measure can be interpreted as assuming a

noninformative prior on anomalies. In summary, by taking our MV-

set to be bGβ = {x : bfα(x) = −1} we can estimate the MV-set of

our data using NP classification algorithms.

The idea of reducing a supervised problem to an unsupervised

problem by sampling from a reference measure has apparently been

known for some time [8]. Although they do not speak in terms of

“Neyman-Pearson classification,” the reduction outlined above is es-

sentially described in [9]. The two-class idea was also applied in [10]

to reduce density level set estimation to cost-sensitive classification.

In a kind of hybrid between one- and two-class methods, [11] em-

ploys artificial uniform data to select the parameters of the OC-SVM.

1.4. The challenge of generating uniform data

The two-class approach entails generating realizations from the ref-

erence measure µ. In the case where µ is the Lebesgue measure, it

suffices to draw points uniformly from some hypercube containing

the data, with some extra care necessary when dealing with discrete-

valued data. However, as the number of points drawn grows, so does

the computational complexity of the training process. With a limited

number of simulated points, independent generation of the uniform

data may suffer because P may be concentrated in a very small vol-

ume of space. Furthermore, in high dimensions, the average inter-

point distance increases, and more and more of the simulated points

will be so far from the data as to be useless in estimating the volume.

This can be viewed as one aspect of the “curse of dimensionality”.

We consider two alternative methods for overcoming these chal-

lenges. The first involves drawing many more points than are ul-

timately desired and then adaptively removing points, or thinning,

to get the desired number of points. This approximately results in

a “packing set” with a large minimum distance between neighbor-

ing points. While thinning does offer a significant gain with respect

to independent uniform sampling, it does not account for the “vast-

ness of space” in high dimensions. A second approach, called mani-

fold sampling, does address this concern and also adapts to potential

manifold structure in the data.

1.5. Performance analysis and benchmark experiments

Most papers proposing algorithms for MV/level set estimation or

NP/cost-sensitive classification do not adopt a systematic methodol-

ogy for comparing different methods. The typical paper introduces a

new algorithm and provides an ROC curve that conveys the ability of

1Note that the MV-set does not change if we truncate µ outside of the

support of P . Thus, if µ is Lebesgue measure then it suffices to simulate

points uniformly on some region containing the support of P .

the algorithm to trade off false alarms for misses. However, in most

practical settings, we desire a specific false alarm rate. Therefore,

in evaluating a specific algorithm, we need to ask not only “Can we

trade off false alarms for misses?” but also “How precisely can we

guarantee a desired false alarm rate?”

Toward this end, we advocate a recently introduced performance

measure for comparing algorithms for MV-set estimation [12]. We

conduct several numerical experiments and use this performance

measure to compare the one-class and two-class methods. Since our

benchmark datasets are obtained by taking one class from a data set

for binary classification, we have two obvious options for measuring

performance on anomalous data. We can either estimate the volume

of the set, which assumes that anomalies are actually uniformly dis-

tributed, or we can treat the second class as anomalies and compare

the MV-set with a classifier that has access to both classes. The lat-

ter gives a way of assessing the robustness of the implicit assumption

that the anomalies are uniformly distributed.

Since satisfying the targeted mass constraint is so crucial in MV-

set estimation, our emphasis on a systematic comparison using a

scalar performance measure highlights the importance of error es-

timation. Not only should an algorithm be flexible in the sense of

having a large area under its ROC, but it should also be possible to

accurately estimate the enclosed mass and volume so that the free

parameters of the algorithm can be set appropriately.

1.6. Summary of contributions

We contribute two methods for generating the artificial uniform data

that outperform independent sampling. Employing a practical per-

formance measure, we report an experimental comparison of a one-

class method (the OC-SVM) and a two-class method (based on the

algorithm in [7]) on five benchmark datasets. We find that the two-

class method consistently outperforms the one-class method, and

conjecture that this is in part due to the improved error estimation

capabilities of this method. We also find that the MV-set performs

nearly as well in some cases as a classifier that was trained having

access to examples of actual anomalies. This indicates that the im-

plicit uniform prior on anomalies is often quite robust. Finally, we

have made our code, which is based on the LIBSVM package [13],

available at www.dsp.rice.edu/software.

2. SUPPORT VECTOR MACHINES

Support vector machines (SVMs) are among the most effective

methods for learning classifiers from training data [14]. Concep-

tually, we construct the support vector classifier in a two step pro-

cess. In the first step we transform the xi ∈ R
d via a mapping

Φ : R
d → H where H is a high (possibly infinite) dimensional

Hilbert space. The intuition is that we should be able to separate

these classes more easily in H than in R
d. For algorithmic reasons,

we choose Φ so that we can compute inner products in H through

the kernel operator k(x,x′) = 〈Φ(x), Φ(x′)〉H.

In the second step, we determine a hyperplane in the induced

feature space according to the max-margin principle, which states

that, in the case where we can separate the two classes by a hyper-

plane, we should pick the hyperplane that maximizes the margin —

the distance between the decision boundary and the closest point to

the boundary. This hyperplane is then our decision boundary. Thus,

if w ∈ H and b ∈ R are the normal vector and affine shift (or bias)

defining the max-margin hyperplane, then the support vector classi-

fier is given by fw,b(x) = sgn(〈w, Φ(x)〉H + b).

2.1. Neyman-Pearson support vector machines

There are several different formulations of the SVM. In this pa-

per we will focus on the cost-sensitive ν-SVM, or the 2ν-SVM,
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first proposed in [15]. Let I+ = {i : yi = + 1} and

I− = {i : yi = − 1}, and set n+ = |I+| and n− = |I−|.
The 2ν-SVM has the primal formulation:

min
w,b,ξ,ρ

1

2
‖w‖2 − 2ν+ν−ρ +

ν−

n+

X
i∈I+

ξi +
ν+

n−

X
i∈I

−

ξi

s.t. yi(k(w,xi) + b) ≥ ρ − ξi for i = 1, 2, . . . , n

ξi ≥ 0 for i = 1, 2, . . . , n

ρ ≥ 0.

In [7] it was shown that we can use the 2ν-SVM to achieve

the desired false alarm rate by adjusting ν+ and ν− appropriately.

Specifically, we conduct a grid search over the SVM parameters and

estimate PF and PM using some error estimation technique such as

cross-validation, denoting these estimates bPF and bPM . Finally, we

select the parameter combination minimizing bPM such that bPF ≤ α,

and train an SVM on the full training set using these parameters.

The dual formulation of (P2ν ) is feasible if and only if ν+ ≤ 1 and

ν− ≤ 1, with a trivial solution if ν+ ≤ 0 or ν− ≤ 0 [16]. Therefore,

to search over the parameters of the 2ν-SVM it suffices to conduct a

search over a uniform grid of (ν+, ν−) in [0, 1] × [0, 1].

Furthermore, we can significantly improve the performance of

the basic grid search method. First, the additional parameter in the

2ν-SVM can render a full grid search somewhat time consuming.

Fortunately, a simple speed-up is possible. A simple coordinate

descent search approach can perform almost as well as a full grid

search, but is much faster [7]. In addition, for the full grid search

over (ν+, ν−), after estimating the error at each point on the grid,

we can low-pass filter both bPF and bPM with a Gaussian window.

For coordinate descent we window along lines in the grid. This

effectively reduces the variance of the error estimates. It is espe-

cially effective for high variance estimates such as cross-validation,

and can significantly improve the performance. Without windowing,

some grid points will look much better than they actually are, due to

chance variation [7].

2.2. One-Class support vector machines

The one-class SVM (OC-SVM) was proposed in [3] for the problems

of estimating the support of a high-dimensional distribution and nov-

elty detection. The OC-SVM can be formulated as

min
w,ξ,ρ

1

2
‖w‖2 − νρ +

1

n

nX
i=1

ξi

s.t. k(w,xi) ≥ ρ − ξi for i = 1, 2, . . . , n

ξi ≥ 0 for i = 1, 2, . . . , n.

The resulting decision function

f(x) = sgn(k(w,x) − ρ)

will be positive on a set containing most xi. Thus, in this algorithm

the MV-set is chosen to be bGβ = {x : f(x) > 0}.

However, the user must set any kernel parameters and the param-

eter ν. It is not immediately clear how to choose these parameters so

that bGβ reasonably approximates G∗
β . The challenge lies in the fact

that while we can estimate P (G) from the data, thus ensuring that

P (G) > β, there will in general be many possible parameter settings

that result in sets G that satisfy this requirement, and we must select

only one. Specifically, we would like to choose the one with mini-

mum volume. Thus we must estimate the volume of the set induced

by each parameter setting. We do so by drawing a large number of

points from µ and then calculating the fraction of these points that

lie in G for each parameter setting, as in [11]. We will now proceed

to describe several different methods for generating these points.

3. GENERATING UNIFORM DATA

The two-class method entails generating realizations from the ref-

erence measure µ. In the case where µ is the Lebesgue measure

and the features are real-valued, it suffices to draw points uniformly

from some hypercube containing the data. In some cases we will

have training data where some (or all) of the features assume a fi-

nite number of discrete values. For example, one feature might be

gender, in which case the data points will assume only one of two

possible values. In this case it makes little sense to draw training

points uniformly from a hypercube containing the data, thus we in-

stead draw points uniformly from the discrete set of values the fea-

ture can assume.

In both cases, drawing these points is a straightforward proce-

dure. However, as the number of points drawn grows, so does the

computational complexity of the training process. Thus, in prac-

tice, we must only draw a small number of points. Unfortunately,

with a limited number of simulated points, independent generation

of the uniform data may suffer because P may be concentrated in

a very small volume of space. Furthermore, in high dimensions,

the average interpoint distance increases, and more and more of the

simulated points will be so far from the data as to be useless in esti-

mating the volume. This can be viewed as one aspect of the “curse

of dimensionality”

3.1. Thinning

The thinning approach is to draw many more points than are ulti-

mately desired, and then adaptively remove points to get the desired

number of points. Specifically, say that we draw m points and ul-

timately want n points, where m � n. We then compute the Eu-

clidean distance between all possible pairs of points. We can iter-

atively remove points by considering the remaining points and se-

lecting the pair of points that are closest to each other. We throw

away one of these points by removing the one that is closest to any

of the remaining points. When iteratively applied, this results in a

data set where the points are ensured to be separated by a relatively

large minimum distance [17].

3.2. Manifold sampling

The thinning approach described above helps to evenly distribute the

points throughout space. This is potentially problematic in high di-

mensions. When dealing with high-dimensional data, it is common

for the data to occupy a very small fraction of the total volume of a

hypercube containing the data. For example, our data might lie on

a low-dimensional manifold embedded in a high-dimensional space.

In this case, a small number of points drawn uniformly on the hyper-

cube may be of little use in estimating the MV-set — it is extremely

unlikely that any points will lie within the MV-set, and hence it is

essentially impossible to estimate the volume of the set.

We propose a second approach that models the observed data

as lying on a low-dimensional manifold. First, compute the average

distance between a point and its kth nearest neighbor, where k is

chosen by the user (in our experiments we take k = 10). Then,

generate a large number m of points by selecting an xi at random,

and then randomly drawing a point from the sphere centered at xi

whose radius is the number computed in the first step. We can think

of the union of these spheres as a thickened manifold within which

the data lie. Again, we can apply the thinning technique to get a

reduced set of points that are separated by a large minimum distance.

These points also lie within a set that contains the data but potentially
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(a) independent uniform sampling (b) thinned uniform sampling (c) manifold sampling

Fig. 2. Methods for generating uniform data. (a) n points sampled independently from a uniform distribution. (b) 10 n points sampled from

a uniform distribution thinned to n points. (c) 10 n points sampled from a thickened manifold thinned to n points.

has a much smaller volume than that of the bounding hypercube.

This technique and those described above are illustrated in Figure 2.

4. MEASURING PERFORMANCE

Any experimental comparison of different methods for MV-set esti-

mation requires a measure of performance, that is, a scalar criterion

that can be used to compare two estimated MV-sets head-to-head.

For example, suppose we have a pair of sets G, G′; how can we de-

termine which set is “better” in a meaningful way? The tendency in

previous work has been to adjust the parameters of the different algo-

rithms a posteriori until P (G) ≈ P (G′), and then say that G is “bet-

ter” if µ(G) < µ(G′). However, this simply avoids the issue of actu-

ally making a direct comparison of G and G′ when P (G) < P (G′)
and µ(G) < µ(G′), as will often happen in practice.

One possible scalar measure of performance is to assign a

“score” of µ(G) to the set if P (G) ≥ β, and ∞ otherwise. This

is problematic, however, because we must estimate P (G), and this

estimate is susceptible to error. Moreover, in practical settings, it is

often acceptable (and sometimes unavoidable) to have P (G) be a

small amount less than β. Thus, it seems preferable to have some

tolerance for estimates whose mass is slightly less than β.

As an alternative, we evaluate an MV-set using

Eµ(G) =
1

1 − β
max {β − P (G), 0} + µ(G)

As discussed in [12], this measure has the following desirable prop-

erties: (i) It is minimized by the set G∗
β . (ii) It can be accurately

estimated from a test sample using the simple plug-in estimate. (iii)

It has the appealing property that as β draws closer to 1, a stiffer

penalty is exacted on classifiers that violate the constraint. In other

words, it penalizes the relative error (β − P (G))/(1 − β).

In our experiments we employ benchmark data sets for binary

classification and perform MV-set estimation using only the nega-

tively labeled class. We use the test set to estimate P (G), and we

estimate µ(G) by generating a large test set of uniform data. In ad-

dition, since we only use one class for training, we have a second

performance measure:

E+(G) =
1

1 − β
max {β − P (G), 0} + Q+(G),

where Q+({x : f(x) = −1}) is the probability of error on the class

not used during training. In some sense this is a more appropriate

metric because µ is effectively a prior for the anomaly distribution,

while Q+ is the actual anomaly distribution. We will consider this

measure as well since we would like our algorithm to perform well

regardless of the structure of the anomalous data.

5. EXPERIMENTS

In our experiments with the OC-SVM we used the LIBSVM

package [13]. For the NP-SVM we adapted the LIBSVM pack-

age to implement the 2ν-SVM, which is available online at

www.dsp.rice.edu/software.

We ran our algorithms on the benchmark datasets “banana”,

“breast-cancer”, “heart”, “thyroid”, and “ringnorm”. The datasets

are available online with documentation.2 The first and last data

set are synthetic, while the other three are based on real data col-

lected from various repositories on the web. The “breast-cancer”

and “heart” datasets have a mixture of discrete and continuous fea-

tures, while the other datasets have exclusively continuous features.

The dimensions of the datasets are 2, 9, 13, 5, and 20 respectively.

For our experiments we used the negatively labeled training vectors

as the realizations of the typical distribution, and estimated aver-

age performance over 30 different permutations of each data set into

training and test data. The data sets contained 400, 200, 170, 140,

and 400 training vectors respectively, although the number of nega-

tively labeled training vectors varies over the different permutations.

The targeted β is 0.9.

In all of our experiments we used a radial basis function (Gaus-

sian) kernel and searched for the bandwidth parameter σ over a log-

arithmically spaced grid of 50 points from 10−4 to 104. For the 2ν-

SVM method we considered a 50 × 50 regular grid of (ν+, ν−) ∈
[0, 1] × [0, 1]. For the OC-SVM we considered a 50 point logarith-

mically spaced grid of ν from 10−4 to 1.

For each permutation of each data set we used the negatively la-

beled training and test vectors as our normal data set. We then ran

our algorithms on the training data and estimated P , µ, and Q+ us-

ing the test vectors and a large set of vectors drawn independently

from a hypercube containing the data (or uniformly on the discrete

set of feature values as appropriate). Table 1 reports the mean values

for P , µ, and Q+ over 30 permutations, along with standard errors.

For each permutation we also computed the performance measures

Eµ and E+, and we show the mean and median values in the ta-

ble. The methods compared are the 2ν-SVM with a windowed grid

search over (ν+, ν−), and the OC-SVM. For both of these methods,

we considered estimating the volume using independent sampling

from a hypercube, thinned sampling, and manifold sampling. For all

methods, the parameters were selected using 5-fold cross-validation.

Furthermore, in Table 2 we show the results of applying an es-

timated MV-set to the problem of NP classification. Specifically,

we compare the performance of the technique outlined above with

2http://ida.first.fhg.de/projects/bench
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(a) Classifier (MV-set estimate) without knowledge of “+” class.

(b) Classifier with knowledge of “+” class.

Fig. 3. Performance of MV-sets applied to NP classification.

the performance of a 2ν-SVM which is trained with access to the

anomalous data set. An example of this is illustrated in Figure 3.

6. CONCLUSIONS

Our experimental results provide some interesting conclusions as

well as some questions for further research. While we do not state

the results in Table 1, we compared the methods shown with a thresh-

olded kernel density estimate. While this method seemed to perform

relatively well on the “banana” dataset, it was not competitive at all

on the other, higher-dimensional datasets. Next, we can see in Table

1 that the two-class method consistently outperforms the one-class

when measured with respect to both the mean and median (with re-

spect to the 30 permutations) values of Eµ and E+. In particular,

as measured by Eµ, the manifold sampling two-class method always

outperforms all of the one-class methods. When measuring perfor-

mance using E+, the manifold sampling two-class method fails to

beat the one-class methods on the “ringnorm” dataset, but is still

competitive.

Regarding the various sampling methods: For the one-class, the

results are generally within the standard errors, and so no conclu-

sions can be drawn except for the case of “ringnorm”. This is a

high-dimensional dataset, and as expected, the thinning and man-

ifold sampling strategies result in a clear improvement over inde-

pendent sampling. For the two-class, the three methods are again

indistinguishable (up to standard errors) on “banana” and “thyroid”,

and as before, the manifold sampling strategies result in a marked

improvement on “ringnorm”. However, there is a clear drop in per-

formance on “heart” and “breast-cancer” when we use the thinning

technique. Recall that these two datasets are the only two with any

discrete features. The loss in performance in this case is likely due

to the fact that our thinning strategy is based on trying to maximize

the minimum Euclidean distance between the points. In this setting

it might be more appropriate to only apply the thinning technique to

the features that are continuous. Note also that as measured by Eµ,

the manifold sampling technique seems to perform extremely well

on these two datasets, while this performance does not carry over to

E+. We regard E+ as the more meaningful quantity in this case, and

since this only occurs for the datasets with discrete features, we sus-

pect that for similar reasons as above, the manifold sampling method

only appears to perform significantly better than independent sam-

pling on these data sets. Both of these issues warrant further investi-

gation.

Finally, Table 2 shows that in four of the five cases, the NP

classifier trained on two real classes outperforms the MV-set classi-

fier, which trains on only one class. This is not surprising, although

somewhat unexpected is that the miss rates (Q+) for the two meth-

ods are comparable on three of the five datasets. This would seem to

indicate that the uniform prior is often a reasonable assumption.
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Table 1. Mean values and standard errors of P , µ, and Q+ (over 30 permutations of each data set) and the associated mean and median error

scores (Eµ and E+) for the six methods. The tested methods are the OC-SVM and the NP-SVM approaches, where for both methods we tried

estimating the volume using independent sampling, thinned sampling, and manifold sampling (denoted Ind, Thin, and Man in the table). Here

β = 0.9, and µ is estimated by generating 10,000 points in a hypercube containing the data.

mass(P ) volume (µ) mean Eµ median Eµ Q+ mean E+ median E+

banana

OC-Ind .811 ± .25 .384 ± .12 1.358 ± 2.35 0.500 .326 ± .17 1.301 ± 2.40 0.398

OC-Thin .810 ± .24 .383 ± .12 1.360 ± 2.35 0.503 .329 ± .17 1.305 ± 2.40 0.396

OC-Man .804 ± .25 .384 ± .12 1.430 ± 2.36 0.500 .343 ± .18 1.389 ± 2.41 0.398

NP-Ind .895 ± .03 .367 ± .05 0.532 ± 0.25 0.423 .198 ± .04 0.363 ± 0.23 0.256

NP-Thin .895 ± .02 .343 ± .05 0.470 ± 0.16 0.420 .184 ± .03 0.310 ± 0.14 0.246

NP-Man .899 ± .02 .350 ± .05 0.444 ± 0.15 0.403 .193 ± .04 0.287 ± 0.13 0.231

breast

OC-Ind .884 ± .05 .297 ± .08 0.550 ± 0.49 0.369 .800 ± .09 1.053 ± 0.45 0.926

OC-Thin .889 ± .04 .298 ± .08 0.494 ± 0.32 0.354 .801 ± .10 0.997 ± 0.31 0.895

OC-Man .919 ± .04 .586 ± .15 0.693 ± 0.26 0.702 .882 ± .07 0.988 ± 0.26 0.917

NP-Ind .897 ± .04 .121 ± .02 0.293 ± 0.29 0.141 .625 ± .09 0.797 ± 0.29 0.688

NP-Thin .826 ± .11 .905 ± .12 1.747 ± 0.86 1.388 .724 ± .17 1.567 ± 0.81 1.221

NP-Man .927 ± .04 .007 ± .00 0.064 ± 0.14 0.008 .773 ± .09 0.830 ± 0.16 0.811

heart

OC-Ind .883 ± .06 .283 ± .08 0.628 ± 0.39 0.472 .613 ± .09 0.958 ± 0.38 0.823

OC-Thin .883 ± .07 .292 ± .08 0.647 ± 0.45 0.480 .619 ± .10 0.973 ± 0.45 0.820

OC-Man .916 ± .04 .458 ± .10 0.577 ± 0.24 0.508 .729 ± .10 0.848 ± 0.22 0.779

NP-Ind .883 ± .05 .136 ± .04 0.432 ± 0.36 0.268 .411 ± .09 0.707 ± 0.38 0.542

NP-Thin .834 ± .09 .496 ± .25 1.257 ± 0.64 1.061 .282 ± .16 1.044 ± 0.66 0.829

NP-Man .918 ± .06 .002 ± .00 0.155 ± 0.31 0.002 .607 ± .14 0.761 ± 0.24 0.695

thyroid

OC-Ind .877 ± .07 .371 ± .11 0.767 ± 0.57 0.579 .145 ± .10 0.541 ± 0.56 0.314

OC-Thin .867 ± .07 .382 ± .11 0.837 ± 0.63 0.502 .117 ± .09 0.572 ± 0.61 0.332

OC-Man .897 ± .07 .528 ± .16 0.866 ± 0.48 0.741 .161 ± .11 0.499 ± 0.43 0.302

NP-Ind .880 ± .05 .319 ± .10 0.630 ± 0.46 0.511 .240 ± .15 0.551 ± 0.45 0.385

NP-Thin .866 ± .07 .325 ± .10 0.788 ± 0.56 0.621 .097 ± .05 0.561 ± 0.51 0.384

NP-Man .870 ± .07 .294 ± .09 0.701 ± 0.67 0.519 .034 ± .04 0.441 ± 0.65 0.240

ringnorm

OC-Ind .904 ± .03 .022 ± .01 0.106 ± 0.16 0.035 .005 ± .002 0.089 ± 0.16 0.009

OC-Thin .925 ± .02 .041 ± .01 0.053 ± 0.03 0.042 .008 ± .003 0.020 ± 0.03 0.008

OC-Man .926 ± .02 .039 ± .01 0.053 ± 0.03 0.042 .007 ± .003 0.020 ± 0.03 0.009

NP-Ind .892 ± .03 .020 ± .01 0.174 ± 0.20 0.079 .005 ± .001 0.158 ± 0.20 0.057

NP-Thin .960 ± .03 .104 ± .04 0.105 ± 0.04 0.094 .018 ± .009 0.020 ± 0.01 0.019

NP-Man .941 ± .02 .052 ± .03 0.058 ± 0.03 0.049 .010 ± .005 0.015 ± 0.03 0.009

Table 2. Mean values and standard errors of Q− and Q+ (over 30 permutations of each data set) and the associated mean and median

error scores. The two methods we compare are denoted “Without” and “With”. The “Without” method uses the NP-SVM technique with an

artificially generated positive class (generated using manifold sampling). The “Without” method only has access to the negative class during

training. The “With” method also uses the NP-SVM technique but has access to both classes during training. Here β = 0.9, or equivalently,

α = 0.1.

Q− Q+ mean E+ median E+

banana
Without .102 ± .02 .193 ± .04 .287 ± .13 .231

With .104 ± .02 .124 ± .02 .243 ± .14 .160

breast
Without .073 ± .04 .773 ± .09 .830 ± .16 .811

With .112 ± .06 .689 ± .10 .985 ± .41 .821

heart
Without .082 ± .06 .607 ± .14 .761 ± .24 .542

With .113 ± .05 .231 ± .07 .497 ± .37 .326

thyroid
Without .130 ± .07 .034 ± .04 .441 ± .65 .240

With .087 ± .06 .032 ± .05 .222 ± .37 .051

ringnorm
Without .059 ± .02 .010 ± .01 .015 ± .03 .009

With .074 ± .02 .008 ± .01 .021 ± .04 .008
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