
CONTROLLING FALSE ALARMS WITH SUPPORT VECTOR MACHINES

Mark A. Davenport, Richard G. Baraniuk ∗

Rice University

Department of Electrical and Computer Engineering

Clayton D. Scott †

Rice University

Department of Statistics

ABSTRACT

We study the problem of designing support vector classifiers with
respect to a Neyman-Pearson criterion. Specifically, given a user-
specified level α ∈ (0, 1), how can we ensure a false alarm rate
no greater than α while minimizing the miss rate? We examine
two approaches, one based on shifting the offset of a convention-
ally trained SVM and the other based on the introduction of class-
specific weights. Our contributions include a novel heuristic for im-
proved error estimation and a strategy for efficiently searching the
parameter space of the second method. We also provide a charac-
terization of the feasible parameter set of the 2ν-SVM on which the
second approach is based. The proposed methods are compared on
four benchmark datasets.

1. INTRODUCTION

Most approaches to classification attempt to infer a classifier that
minimizes the probability of making an error. In many important
applications, however, some kinds of errors are more important than
others. In tumor classification, for example, the impact of mistakenly
classifying a benign tumor as malignant is much less than that of the
opposite mistake.

In the Neyman-Pearson (NP) classification paradigm, the goal
is to design a classifier (based on training data) that minimizes the
probability of a miss while constraining the probability of a false
alarm to be less than some user-specified significance level α. Un-
like Neyman-Pearson hypothesis testing in classical detection the-
ory, NP classification relies entirely on training data, placing no para-
metric assumptions on the data.

The NP framework has two major advantages with respect to
conventional classification criteria that seek to minimize the proba-
bly of error or, more generally, an expected misclassification cost.
First, assigning costs is often less intuitive or reasonable than as-
signing a false alarm constraint. Second, NP classification does not
assume knowledge of the a priori class probabilities. This is ex-
tremely important in applications where the class frequencies in the
training data do not accurately reflect class probabilities in the larger
population. In fact, it could probably be argued that most classifi-
cation problems of interest fit this description. For a more detailed
motivation for the Neyman-Pearson paradigm, see [1].

This paper studies support vector machines (SVMs) for NP clas-
sification. In the SVM literature two approaches have been sug-
gested for controlling false alarms. One involves shifting the offset
parameter, resulting in an affine shift of the decision boundary, and
the other entails introducing an additional parameter to control the

∗Supported by NSF, AFOSR, ONR, and the Texas Instruments Leader-
ship University Program.

†Supported by an NSF VIGRE postdoctoral training grant.
Email: {md,richb,cscott}@rice.edu, Web: dsp.rice.edu

relative weight given to each class. It is clear that both approaches
affect the desired tradeoff between false alarms and misses. What
is not clear, however, is how to implement these ideas to achieve a
specific false alarm level α. In other words, the primary challenge is
accurate error estimation.

As might be expected, we find that shifting the offset parame-
ter does not perform as well as introducing an additional parameter
to control the relative weights. However, optimizing over this addi-
tional parameter significantly increases the training time. We pro-
pose a method for greatly reducing the complexity of the expanded
search with no significant loss in performance. We also suggest a
method for decreasing the variance of the error estimates, which are
crucial for NP classification. Furthermore, we offer two contribu-
tions regarding the 2ν-SVM, the cost-sensitive SVM we employ.
First, we present a theorem that precisely characterizes the feasi-
ble set for the defining quadratic program. Second, we have made
available at www.dsp.rice.edu/software our code, which is based on
the LIBSVM package [2].

2. SUPPORT VECTOR MACHINES

Support vector machines (SVMs) are among the most effective
methods for classification [3]. Let (xi, yi), i = 1, 2, . . . , n denote
the training data where xi ∈ R

d is a d-dimensional feature vector
and yi ∈ {+1,−1} indicates the class of xi. Conceptually, the sup-
port vector classifier is constructed in a two step process. In the first
step, the xi are transformed via a mapping Φ : R

d → H where H is
a high (possibly infinite) dimensional Hilbert space. The intuition is
that the two classes should be more easily separated in H than in R

d.
For algorithmic reasons, Φ must be chosen so that the kernel opera-
tor k(x,x′) = 〈Φ(x), Φ(x′)〉H is positive definite. This allows us
to compute inner products in H without explicitly evaluating Φ.

In the second step, a hyperplane is determined in the induced
feature space according to the max-margin principle. In the case
where the two classes can be separated by a hyperplane, the SVM
finds the hyperplane that maximizes the margin – the distance be-
tween the decision boundary and the closest point to the bound-
ary. When the classes cannot be separated by a hyperplane, the
constraints are relaxed through the introduction of slack variables
ξi. If ξi > 0, this means that the corresponding xi lies inside
the margin and is called a margin error. If w ∈ H and b ∈ R

are the normal vector and affine shift defining the max-margin hy-
perplane, then the support vector classifier is given by fw,b(x) =
sgn(〈w, Φ(x)〉H + b). The offset parameter b is often called the
bias.

There are two different formulations of the SVM. The original
SVM [4], which we will call the C-SVM, can be formulated as the

V 589142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

following quadratic program:

(PC) min
w,b,ξ

1

2
‖w‖2 + C

nX
i=1

ξi

s.t. yi(k(w,xi) + b) ≥ 1 − ξi for i = 1, 2, . . . , n

ξi ≥ 0 for i = 1, 2, . . . , n

where C ≥ 0 is a tradeoff parameter that controls overfitting.
For computational reasons, it is often easier to solve (PC) by

solving its dual formulation. This is derived by forming the La-
grangian and then optimizing over the Lagrange multiplier α instead
of the primal variables. The primal and the dual are related through
w =

Pn

i=1
αiyiΦ(xi). For most xi, we will have αi = 0. The xi

for which αi �= 0 are called support vectors.
An alternative (but equivalent) formulation of the C-SVM is the

ν-SVM [5], which replaces C with a different parameter ν ∈ [0, 1]
that serves as an upper bound on the fraction of margin errors and a
lower bound on the fraction of support vectors. The ν-SVM has the
primal formulation:

(Pν) min
w,b,ξ,ρ

1

2
‖w‖2 − νρ +

1

n

nX
i=1

ξi

s.t. yi(k(w,xi) + b) ≥ ρ − ξi for i = 1, 2, . . . , n

ξi ≥ 0 for i = 1, 2, . . . , n

ρ ≥ 0.

The above formulations implicitly penalize errors in both classes
equally. However, as described in the introduction, in many applica-
tions there are different costs associated with the two different kinds
of errors. To address this issue, cost-sensitive extensions of both the
C-SVM and the ν-SVM have been proposed, which we shall denote
the 2C-SVM and the 2ν-SVM, respectively.

First we will consider the 2C-SVM proposed in [6]. Let I+ =
{i : yi = +1} and I− = {i : yi = −1}. The 2C-SVM has primal:

(P2C) min
w,b,ξ

1

2
‖w‖2 + Cγ

X
i∈I+

ξi + C(1 − γ)
X
i∈I

−

ξi

s.t. yi(k(w,xi) + b) ≥ 1 − ξi for i = 1, 2, . . . , n

ξi ≥ 0 for i = 1, 2, . . . , n.

where γ ∈ (0, 1) is a parameter for trading off false alarms and
misses.

Similarly, [7] proposed the 2ν-SVM as a cost-sensitive exten-
sion of the ν-SVM. The 2ν-SVM has primal:

(P2ν) min
w,b,ξ,ρ

1

2
‖w‖2 − νρ +

γ

n

X
i∈I+

ξi +
1 − γ

n

X
i∈I

−

ξi

s.t. yi(k(w,xi) + b) ≥ ρ − ξi for i = 1, 2, . . . , n

ξi ≥ 0 for i = 1, 2, . . . , n

ρ ≥ 0.

Above we stated that (PC) and (Pν) are equivalent. This notion
was made precise in [8]. We have extended this result to show that
(P2C) and (P2ν) are equivalent in the following sense. The proof is
given in a supplemental technical report [9].

Theorem 1. Let (D2C) and (D2ν) denote the duals of (P2C) and
(P2ν) respectively. Fix γ ∈ [0, 1] and let α∗ be any optimal solution
of (D2C). Define

ν∗ = lim
C→∞

Pn

i=1
α∗

i

Cn
, ν∗ = lim

C→0

Pn

i=1
α∗

i

Cn
.

Then

0 ≤ ν∗ ≤ ν∗ =
min(γn+, (1 − γ)n−)

n
≤

1

2

where n+ = |I+| and n− = |I−|. Then 0 ≤ ν∗ ≤ ν∗ = νmax ≤ 1

2
.

Thus, for any ν > ν∗, (D2ν) is infeasible. For any ν ∈ (ν∗, ν
∗]

the optimal objective value of (D2ν) is strictly positive, thus there
exists at least one C > 0 such that any α is an optimal solution of
(D2C) if and only if α/(Cn) is an optimal solution of (D2ν). For
any ν ∈ [0, ν∗], (D2ν) is feasible with zero optimal objective value
(and a trivial solution).

3. CONTROLLING FALSE ALARMS

As mentioned in the Introduction, there are two main strategies for
controlling false alarms. The first is to train a C-SVM or ν-SVM
and then shift the bias (b) to achieve the desired false alarm rate. The
second approach is to use the 2C-SVM or 2ν-SVM and achieve the
desired false alarm rate by adjusting γ appropriately. As described
is Section 2, (P2C) and (P2ν), as well as (PC) and (Pν), are closely
related and equivalent in the sense that they explore the same set of
possible solutions. For the remainder of this paper we restrict our
attention to the ν-SVM and the 2ν-SVM, because their parameter
spaces are more conveniently discretized. This is important because
it makes the coordinate descent and windowing heuristics we de-
scribe below more reasonable.

In what follows PF (f) and PM (f) denote the false alarm and
miss rates of a classifier f , and bPF (f) and bPM (f) denote estimates
of these quantities.

3.1. Bias-shifting approach

A potential advantage of the bias-shifting strategy is the ability to
separate the training into two stages. First, we search over the pa-
rameters of the SVM (ν and any kernel parameters). Using an error
estimation method such as cross-validation (CV), we then select the
parameters that minimize the estimated probability of error. Sec-
ond, we shift the bias of that chosen classifier and, again using some
form of error estimation, select the bias minimizing bPM such thatbPF ≤ α. Note that the first error estimate must be nested within the
second. In our experiments we use the resubstitution estimate to se-
lect the bias. Resubstitution is generally a poor estimate when the set
of classifiers is complex; however, once we fix a normal vector w,
the set of possible shifted hyperplanes is a class with low complexity,
and so resubstitution is in fact a reasonable error estimate.

Since some datasets are unbalanced, we can also apply the above
strategy using a 2ν-SVM with ν+ = ν− (where ν+ and ν− are
as defined in Section 3.2) instead of the ν-SVM. This method is
referred to as balanced bias-shifting.

3.2. 2ν approach

The cost-sensitive extension of the 2ν-SVM proposed in [7] is pa-
rameterized in a different manner than (P2ν). Specifically, instead

V 590

of parameters ν and γ, (P2ν) is formulated using ν+ and ν−, where

ν =
2ν+ν−n+n−

(ν+n+ + ν−n−)n
, γ =

ν−n−

ν+n+ + ν−n−

=
νn

2ν+n+

or equivalently

ν+ =
νn

2γn+

, ν− =
νn

2(1 − γ)n−

.

This parametrization has the benefit that ν+ and ν− have a more
intuitive meaning, similar to the ν-SVM. Specifically, suppose that
the optimal solution of (P2ν) satisfies ρ > 0. Then for the optimal
solution of (P2ν) ν+ is an upper bound on the fraction of margin
errors and a lower bound on the fraction of support vectors from
class +1. Similarly, ν− is an upper bound on the fraction of margin
errors and a lower bound on the fraction of support vectors from
class −1. See [7] for a proof.

Furthermore, from Theorem 1 it follows that the dual formula-
tion of (P2ν) is feasible if and only if ν+ ≤ 1 and ν− ≤ 1, with
a trivial solution if ν+ ≤ 0 or ν− ≤ 0. Therefore, to search over
the parameters of the 2ν-SVM it suffices to conduct a search over a
uniform grid of (ν+, ν−) in [0, 1]2.

In sum, the full algorithm for NP classification with the 2ν-SVM
is to conduct a grid search over the SVM parameters, estimate PF

and PM using some error estimation technique, and select the pa-
rameter combination minimizing bPM such that bPF ≤ α.

3.3. Coordinate descent: Speeding up the 2ν-SVM

The additional parameter in the 2ν-SVM renders a full grid search
very time consuming. Fortunately, a simple speed-up is possible.
We have observed across a wide range of datasets and kernels that
the errors PF and PM vary smoothly when plotted as functions of
(ν+, ν−) ∈ [0, 1]2. Thus, instead of conducting a full grid search
over (ν+, ν−) we propose a kind of coordinate descent search. Sev-
eral variants are possible, but the one we employ runs as follows:
Find the best parameters on grids placed along the lines ν+ = 1/2
and ν− = 1/2. From then on, conduct a line search in the direc-
tion orthogonal to the previous line search, at each step selecting the
parameters minimizing bPM such that bPF ≤ α. Note that this strat-
egy would be more difficult to justify with the 2C-SVM because the
choice of endpoints and grid spacing would ultimately be arbitrary
and data-dependent.

3.4. Windowing the estimated errors

The observation about the smoothness of PF and PM as functions of
(ν+, ν−) leads to another heuristic improvement in all of our meth-
ods. For the full grid search over (ν+, ν−), after estimating the error
at each point on the grid, we low-pass filter both bPF and bPM with a
Gaussian window. This effectively reduces the variance of the error
estimates. It is especially effective for high variance estimates like
cross-validation. Without windowing, some grid points will look
much better than they actually are, due to chance variation. For co-
ordinate descent we window along lines in the grid, and for the bias
shifting approach, we window the estimates across the ν grid. As
with the coordinate descent strategy, the ability to discretize the pa-
rameter space of the 2ν-SVM with a uniform grid plays a key role
in justifying this heuristic.

4. MEASURING PERFORMANCE

Any experimental comparison of classifiers requires a measure of
performance, that is, a scalar criterion that we can evaluate to com-
pare two classifiers head-to-head. In Neyman-Pearson classification,
if we only report the observed false alarm and miss probabilities, we
will often observe that one classifier has a smaller PF but larger PM

than another. In this case we cannot make a definitive statement
about which classifier is better.

One option for a scalar performance measure is to estimate
PF (f) and PM (f) and assign a “score” of bPM (f) to the classifier
if bPF (f) ≤ α, and ∞ otherwise, where bPF and bPM are based on an
independent test sample. This is problematic, however, because the
estimated false alarm rate is based on data and hence susceptible to
error. Moreover, in practical settings, it is often acceptable to have
PF (f) be a small amount greater than α.

We evaluate our classifiers using the measure

E(f) =
1

α
max {PF (f) − α, 0} + PM (f). (1)

As discussed in [10], this measure satisfies the following de-
sirable properties: (i) It is minimized by the classifier f∗

α =
arg min {PM (f) |PF (f) ≤ α}. (ii) It can be accurately estimated
from a test sample using the simple plug-in estimate. (iii) It has the
appealing property that as α draws closer to 0, a stiffer penalty is
exacted on classifiers that violate the constraint. In other words, it
penalizes the relative error (PF (f) − α)/α.

5. EXPERIMENTS

In our experiments with the ν-SVM we used the LIBSVM package
[2]. For the 2ν-SVM we implemented our own version that is avail-
able online at www.dsp.rice.edu/software.

We ran our algorithms on the benchmark datasets named “ba-
nana”, “heart”, “thyroid”, and “breast.” The datasets are available
online with documentation.1 The first dataset is synthetic, while the
other three are based on real data collected from various repositories
on the web. There are 100 permutations of each dataset into training
and test data. The dimensions of the datasets are 2, 13, 5, and 9, re-
spectively, and the training sample sizes are 400, 170, 140, and 200,
respectively. The targeted α is 0.1.

In all of our experiments we used a radial basis function (Gaus-
sian) kernel and searched for the bandwidth parameter σ over a loga-
rithmically spaced grid of 50 points from 10−4 to 104. For the bias-
shifting method we searched over a uniform grid of the parameter
ν of 50 points. For the 2ν-SVM methods we considered a 50 × 50
regular grid of (ν+, ν−) ∈ [0, 1]2.

For each permutation of each dataset we ran our algorithms on
the training data and estimated the false alarm and miss rates us-
ing the test data. Table 1 reports the average false alarm and miss
rates over all 100 permutations, along with standard deviations. For
each permutation we also computed the performance measure E , and
we show the median values in the table. The table also reports the
average training time of each algorithm. The methods compared
are bias-shifting with the ν-SVM (BS), balanced bias-shifting using
the 2ν-SVM with ν+ = ν− (BBS), the 2ν-SVM with a full grid
search over (ν+, ν−) (GS), and the 2ν-SVM with a coordinate de-
scent search over (ν+, ν−) (CD). For each of the last two methods
we also applied a smoothing window to the error estimates as de-
scribed in Section 3.4. These two variants are indicated by a “W”.

1http://ida.first.fhg.de/projects/bench/

V 591

Table 1. Average values of PF and PM (over 100 permutations of
each data set), the median NP error scores E , and average running
times for the six tested methods. Here α = 0.1. The tested methods
are bias-shifting (BS), balanced bias-shifting (BBS), and 2ν-SVM
grid-search (GS), windowed grid search (WGS), coordinate descent
(CD), and windowed coordinate descent (WCD).

PF PM E Time(s)

th
yr

oi
d

BS .057 ± .07 .455 ± .47 .637 19
BBS .089 ± .06 .059 ± .15 .077 32
GS .098 ± .09 .064 ± .09 .127 898
WGS .087 ± .06 .032 ± .05 .051 898
CD .084 ± .06 .039 ± .05 .066 55
WCD .093 ± .06 .032 ± .05 .082 55

he
ar

t

BS .086 ± .09 .553 ± .39 1.000 58
BBS .113 ± .10 .368 ± .33 .681 66
GS .124 ± .06 .219 ± .07 .375 2801
WGS .113 ± .05 .231 ± .07 .326 2801
CD .106 ± .05 .230 ± .06 .318 169
WCD .110 ± .05 .231 ± .06 .330 169

br
ea

st

BS .000 ± .00 1.00 ± .00 1.000 45
BBS .078 ± .23 .910 ± .24 1.000 83
GS .156 ± .09 .668 ± .10 1.122 2084
WGS .112 ± .06 .689 ± .10 .821 2084
CD .114 ± .06 .683 ± .10 .871 121
WCD .119 ± .06 .678 ± .10 .906 121

ba
na

na

BS .109 ± .07 .334 ± .40 .628 212
BBS .142 ± .04 .104 ± .02 .464 221
GS .114 ± .03 .120 ± .02 .255 9727
WGS .104 ± .02 .124 ± .02 .160 9727
CD .104 ± .02 .125 ± .02 .179 541
WCD .106 ± .03 .124 ± .02 .198 541

The window size was 3 × 3 for GS and 1 × 3 for CD. The standard
deviation of the Gaussian window was set to the length of one grid
interval. Different window sizes and widths were tried, but without
much change in performance. Windowing for BS and BBS was also
tried but lead to no improvements. For all methods, the parameters
were selected using leave-one-out cross-validation (LOOCV). For
the bias-shifting approaches, the bias was selecting using the resub-
stitution estimate.

6. CONCLUSION

We have studied two general approaches to controlling the false
alarm rate with SVMs. Using the ν-SVM and 2ν-SVM, respectively,
we experimentally evaluated the strategies of adjusting the bias and
weighting the margin errors. Since the latter approach introduces an
additional parameter and is therefore much slower than the former,
we also studied a heuristic speed-up based on a greedy coordinate
descent search through the 2ν-SVM parameter space.

Based on the results in Table 1, we can definitively conclude that
the 2ν-SVM methods (GS, WGS, CD, and WCD) outperform bias-
shifting (BS). While balanced bias-shifting (BBS) is also clearly su-
perior to BS, in general it cannot compete with the 2ν-SVM methods
either. In part this is to be expected, since the 2ν-SVM offers a more
flexible set of classifiers. Yet a more significant problem was the
difficulty in enforcing the false alarm constraint; both BS and BBS
frequently result in classifiers for which PF significantly exceeds α,

resulting in poor average performance.
The more surprising result is that the full grid search (GS) per-

formed worse than the heuristics (WGS, CD, and WCD). Window-
ing consistently improved GS, and in general WGS exhibited the
best performance. Windowing did not seem to offer any benefit to
CD, but CD was remarkably competitive with WGS. Moreover, CD
is only 2 to 3 times slower than BS. Given the computational demand
of (W)GS, CD seems to be a reliable compromise of computing time
and performance.

This paper also contributed a theorem on the feasible parameter
set of the 2ν-SVM. This theorem is important for our algorithms be-
cause it allows us to discretize the parameter space via a uniform grid
in the unit square. This regular grid in turn underlies two heuristics
that gave us improved performance: the coordinate descent search
and the windowed error estimates.

The performance of classifiers was measured by E(f) =
(1/α) max{PF (f) − α, 0} + PM (f). Thus, accurate error esti-
mation is crucial to an algorithm’s success. If a learning rule re-
sults in an estimated PF ≤ α, it stands a much better chance of
being competitive with respect to this measure, since errors in ex-
cess of α are penalized heavily. In our algorithms we estimated er-
rors using LOOCV, and selected parameters according to the rule
min{ bPM (f) | bPF (f) ≤ α}. Yet in several cases the final test esti-
mate of PF was in excess of α. We did find some improvements in
error estimation by low-pass filtering the error estimates to remove
some of the high variance of LOOCV.

Future work on Neyman-Pearson classification should focus on
improved methods of error estimation. One possibility is to replace
LOOCV with an error estimate with a negative bias, such as the boot-
strap zero estimator. Another is to train the classifier as if α is really
some number α′ < α. Yet this quickly enters the realm of ad hoc
fixes, and it may take some care to develop rules that perform well
across a variety of datasets.

7. REFERENCES

[1] C. Scott and R. Nowak, “A Neyman-Pearson approach to statistical
learning,” IEEE Trans. on Information Theory, November, 2005.

[2] C. C. Chang and C. J. Lin, LIBSVM: a library for support vector ma-
chines, 2001, Software available at http://www.csie.ntu.edu.tw/∼cjlin/
libsvm.

[3] B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press,
Cambridge, MA, 2002.

[4] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[5] B. Schölkopf, A. J. Smola, R. Williams, and P. Bartlett, “New support
vector algorithms,” Neural Computation, vol. 12, pp. 1083–1121, 2000.

[6] E. Osuna, R. Freund, and F. Girosi, “Support vector machines: Training
and applications,” Tech. Rep. A.I. Memo No. 1602, MIT Artificial
Intelligence Laboratory, March 1997.

[7] H. G. Chew, R. E. Bogner, and C. C. Lim, “Dual-ν support vector
machine with error rate and training size biasing,” in Proc. Int. Conf. on
Acoustics, Speech, and Signal Proc. (ICASSP), 2001, pp. 1269–1272.

[8] C. C. Chang and C. J. Lin, “Training ν-support vector classifiers: The-
ory and algorithms,” Neural Computation, vol. 13, pp. 2119–2147,
2001.

[9] M. A. Davenport, “The 2ν-SVM: A cost-sensitive extension of the ν-
SVM,” Tech. Rep. TREE 0504, Rice University, Dept. of Elec. and
Comp. Engineering, October, 2005, Available at http://www.ece.rice.
edu/∼md.

[10] C. Scott, “Performance measures for Neyman-Pearson classification,”
Tech. Rep., Rice University, Dept. of Statistics, 2005, Available at
http://www.stat.rice.edu/∼cscott.

V 592

