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Abstract

In this paper we propose a new distance metric for signals
that admit a sparse representation in a known basis or dic-
tionary. The metric is derived as the length of the sparse
geodesic path between two points, by which we mean the
shortest path between the points that is itself sparse. We show
that the distance can be computed via a simple formula and
that the entire geodesic path can be easily generated. The
distance provides a natural similarity measure that can be ex-
ploited as a perceptually meaningful distance metric for nat-
ural images. Furthermore, the distance has applications in
supervised, semi-supervised, and unsupervised learning set-
tings.

1. Introduction
Distance metrics play a fundamental role in virtually all as-
pects of data processing. They are used to compare sig-
nals and to quantify how “similar” or “close” two signals
are in such varied tasks as compression, filtering, clustering,
anomaly detection, regression, and classification. The most
common distance metric is the Euclidean, or `2, distance.
This distance can be probabilistically motivated by assum-
ing that a signal of interest has been corrupted with white
Gaussian noise, in which case the `2 distance has a natu-
ral interpretation. There are a variety of common alternative
distance metrics, including the `p norms for p 6= 2, but in the
absence of any additional structure on the data, it is difficult
to justify picking any of these over the Euclidean distance.

More recently, however, we have begun to appreciate the
importance of incorporating data models in a variety of set-
tings. Models are useful for distinguishing classes of inter-
esting or probable signals from uninteresting or improbable
signals. Models typically are effective because they enforce
some low-dimensional structure exhibited by the data and
thereby help us to avoid the curse of dimensionality. They
also provide a mechanism for incorporating a priori knowl-
edge about the data. In general, one can think of a data
model simply as a set X near which the data is likely to
lie. While this knowledge can be exploited in many possible
ways, a natural approach is to reconsider our habitual use of
the Euclidean distance and instead consider a distance more
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suitable for the space X in which our data lives. If we think
of the Euclidean distance as the length of a straight line be-
tween two points, then we can see that unless X is a convex
set, there will exist points where the straight line connecting
them does not lie within X . Hence, for non-convex X it is
natural to replace the Euclidean distance with the geodesic
distance. The geodesic distance for a set X is the length of
the shortest path between a pair of points that never exits X .
A geodesic path is typically interpreted as a generalization
of the notion of a “straight line” to an arbitrary space X .

These ideas play a prominent role in a popular and pow-
erful class of data models: low-dimensional manifolds.
It has been well-established that if the data has a low-
dimensional manifold structure, then exploiting this knowl-
edge can lead to significant performance gains in a vari-
ety of data processing tasks (Donoho and Grimes 2005;
Belkin and Niyogi 2004; Niyogi 2008). Nearly all meth-
ods for exploiting manifold structure ultimately rely on re-
placing the Euclidean distance with the geodesic distance.
Unfortunately, while the manifold assumption is potentially
powerful, in practice the manifold is typically not known,
and so it is usually not possible to explicitly compute the
geodesic distance. Given a sufficiently large data set, it
is possible to estimate the geodesic distance between data
points using various algorithms (J. Tenenbaum and Langford
2000; Roweis and Saul 2000; Donoho and Grimes 2003;
Belkin and Niyogi 2003; Coifman and Maggioni 2006;
Weinberger and Saul 2006). Unfortunately, these methods
typically require a very large amount of data to obtain good
estimates.

While in many applications the data exhibits a low-
dimensional manifold structure, another large class of appli-
cations features data with low-dimensional sparsity struc-
ture. Sparse signals can be well-approximated by a linear
combination of just a few elements from some basis or dic-
tionary (DeVore 1998). Sparsity is a highly nonlinear model,
since the choice of which elements are in the linear combi-
nation can change from signal to signal. This distinguishes
sparsity models from more conventional models like sub-
spaces and principal component analysis. In fact, it is easy
to show that the set of all sparse signals consists of not one
subspace but the union of a combinatorial number of sub-
spaces. In contrast to a manifold model, a sparse model is
completely characterized by the choice of basis/dictionary



and the number of elements K in the linear combination.
Sparsity has been exploited heavily in fields such as im-

age processing for tasks such as compression and denois-
ing (Donoho 1995), since the multiscale wavelet transform
(Mallat 1999) provides concise representations for many
natural images. Sparsity also figures prominently in the
nascent theory of compressive sensing, where sparse signals
are stably recovered from just a few linear measurements
via an optimization or greedy algorithm (Donoho 2006;
Candès 2006), and in the study of the human visual system
(Olshausen and Field 1996).

In this paper, we introduce the notion of the geodesic dis-
tance between two K-sparse signals, which we define as the
shortest path between the two signals such that each point on
the path is alsoK-sparse. Below we derive a simple formula
for the distance and describe a simple algorithm for generat-
ing the geodesic path between any two sparse signals. After
studying the distance’s properties, we examine its use as a
perceptually meaningful error metric for image analysis and
discuss additional potential applications.

2. Sparse Geodesic Paths
2.1 Sparsity and unions of subspaces
A signal is K-sparse with respect to the basis or dictionary
Ψ when we can represent x as x = Ψα with ‖α‖0 ≤ K.1
Denote the set of all sparse signals as ΣK(Ψ) = {x ∈ RN :
x = Ψα where ‖α‖0 ≤ K}. One can see that ΣK(Ψ)
can essentially be thought of as the union of all possible K-
dimensional subspaces obtained by picking K elements of
Ψ. Note that this definition is equally valid for the cases
where Ψ represents an orthonormal basis and where Ψ is an
over-complete dictionary. In the case where Ψ is overcom-
plete, the representation x = Ψα is not unique, and thus
even in the case where x has a K-sparse representation α,
it may not be easy to find. However, this does not affect
the geometry of ΣK(Ψ). For our purposes, the only sig-
nificant difference between the two cases is that if Ψ is an
orthonomral basis then if two signals x and y have represen-
tations with disjoint support, then we also have that x and
y are orthogonal. This does not follow if Ψ is an overcom-
plete dictionary. Since this distinction will have relatively
limited import, we will simply restrict our attention to the
case where Ψ is the N × N identity matrix, and we will
omit the dependence on Ψ from our notation. In Figure 1 (a)
and (b) we illustrate ΣK where K = 2 and N = 3 for the
cases where Ψ = I and where Ψ 6= I is an orthonormal ba-
sis. Our goal is to obtain a simple formula for the geodesic
distance, or the length of a geodesic path such as the one
illustrated in Figure 1 (c).

2.2 Geodesic distance
In order to define the geodesic distance and the correspond-
ing geodesic path for any space X , we must first have some
notion of the length of a path. We represent a path from
a point x to a point y as a continuous function φ from the

1‖·‖0 denotes the `0 quasi-norm, which simply counts the num-
ber of nonzero entries of a vector.

unit interval [0, 1] to RN such that φ(0) = x and φ(1) = y.
Next consider a partition t̄ of the interval [0, 1], by which we
mean a sequence t̄0, t̄1, . . . , t̄M such that 0 = t̄0 < t̄1 <
. . . < t̄M = 1. We let T ([0, 1]) denote the set of all possible
partitions of [0, 1], whereM is unbounded. A particular par-
tition defines a sequence of M + 1 points on the path given
by φ(t̄0), φ(t̄1), . . . , φ(t̄M ). Without placing any assump-
tions on the differentiability of φ, the length of the path φ
is

L(φ) = sup
t̄∈T ([0,1])

M−1∑
m=0

‖φ(t̄m)− φ(t̄m+1)‖2. (1)

In order to find the geodesic path, we must first restrict our-
selves to paths that lie within our space of interest X . Let
ΦX (x, y) denote the set of all paths that satisfy φ(0) = x,
φ(1) = y, and φ(t) ∈ X for all t ∈ [0, 1]. The geodesic path
from x to y in X is thus defined as

γ = arg inf
φ∈ΦX (x,y)

L(φ). (2)

The geodesic distance is denoted by
dX (x, y) = L(γ). (3)

Note that the γ may not be uniquely defined. For instance,
a pair of antipodal points on a sphere can be connected by
an infinite number of geodesic paths. However, the length of
each path is the same, and thus dX (x, y) is well-defined.

2.3 The sparse geodesic distance
We now consider the specific case where X = ΣK . In this
case, for a particular path φ ∈ ΦΣK

(x, y), each t ∈ [0, 1]
corresponds to a point φ(t) ∈ RN that satisfies ‖φ(t)‖0 ≤
K. We define Sx = supp(x), i.e., Sx is the subset of at most
K indices that correspond to the nonzeros of x. Similarly,
Sy = supp(y). We will assume throughout the following
that |Sx| = |Sy| = K, since if |Sx| 6= |Sy| we can always
set K = max(|Sx|, |Sy|) and observe that both x, y ∈ ΣK .
In cases where we require that |Sx| = |Sy|, note that we
can also always simply enlarge the smaller set by arbitrarily
adding indices to equalize the size of the two sets.

We now begin by establishing the following elementary
bounds on dΣK

(x, y).
Proposition 1. For any x, y ∈ ΣK ,

‖x− y‖2 ≤ dΣK
(x, y) ≤ ‖x‖2 + ‖y‖2. (4)

Furthermore, if Sx ∩ Sy = ∅, then2√
‖x‖22 + ‖y‖22 ≤ dΣK

(x, y) ≤ ‖x‖2 + ‖y‖2. (5)

Proof. The upper bounds in (4) and (5) follow from the
simple observation that there always exists a path φ ∈
ΦΣK

(x, y) that consists of a straight line from x to the ori-
gin, and then a straight line from the origin to y, which re-
sults in a length of ‖x‖2 + ‖y‖2. The lower bounds are ob-
tained by observing that dΣK

(x, y) can be no less than the
length of a straight line connecting x and y. We obtain (5)
from (4) by simply enforcing the fact that if Sx ∩ Sy = ∅,
then x and y are orthogonal.

2Note that the result in (5) holds only for the case where Ψ is an
orthonormal basis, while the result in (4) in fact holds for the case
where Ψ is an overcomplete dictionary.
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Figure 1: A depiction of Σ2 embedded in R3. In (a) we have Σ2(I), i.e., the set of all 2-sparse signals in the canonical basis. In
(b) we depict Σ2(Ψ), which is simply a rotated version of Σ2(I). In (c) we illustrate an example of a geodesic path in Σ2(I).

We now turn our attention to how one might calculate
dΣK

(x, y). We begin by observing that any geodesic path
must be well-behaved in a certain sense, so that we can re-
strict our attention to a reduced set of candidate paths. To do
so we will need to establish some notation. Let φ−1

i (0) =
{t : φi(t) = 0}, and define Iz(φ) = {i : φ−1

i (0) 6= ∅}
and Inz(φ) = {i : φ−1

i (0) = ∅}. Essentially Iz(φ) is the
set of indices for which φi(t) = 0 for some value of t, and
Inz(φ) is the set of indices for which φi(t) 6= 0 for all t.
Furthermore, for all i ∈ Iz(φ), define

ti = inf
t∈φ−1

i (0)
t and ri = sup

t∈φ−1
i (0)

t. (6)

Using this notation, we now demonstrate that any geodesic
path is well-behaved in terms of its zero-crossings.
Lemma 1. Suppose that φ ∈ ΦΣK

(x, y). If φ is a geodesic
path, then for all i ∈ Iz(φ)

φi(t) = 0 (7)

for all t ∈ [ti, ri].

Proof. The result follows from the assumption that φ is a
geodesic path. To see this, recall that

L(φ) = sup
t̄∈T ([0,1])

M−1∑
m=0

‖φ(t̄m)− φ(t̄m+1)‖2

= sup
t̄∈T ([0,1])

M−1∑
m=0

√√√√ N∑
n=1

(φn(t̄m)− φn(t̄m+1))2.

Suppose for the sake of a contradiction that φ−1
i (0) 6= ∅

and that there exists a t′ ∈ [ti, ri] such that φi(t′) 6= 0.
Since the supremum is over all partitions t̄, we are free
to require that ti, t′ ∈ t̄. For any such partition, there
exists an m with t̄m, t̄m+1 ∈ [ti, ri] such that the term
(φi(t̄m) − φi(t̄m+1))2 > 0. However, if we modify φ by
setting φ̃i(t) = 0 for all t ∈ [ti, ri] and φ̃(t) = φ(t) oth-
erwise, then φ̃i will contribute zero to the terms in the sum

where t̄m, t̄m+1 ∈ [ti, ri]. Thus L(φ̃) < L(φ), and since the
new path will still satisfy φ̃(t) ∈ ΣK for all t ∈ [0, 1], this
contradicts the assumption that φ is a geodesic path.

From this we also obtain the following useful corollary.
Corollary 1. Suppose that φ ∈ ΦΣK

(x, y) and define
α, β : [0, 1] → RN as follows: For i ∈ Iz(φ) set ti and
ri according to (6), and define

αi(t) =
{
φi(t) for t ∈ [0, ti)
0 for t ∈ [ti, 1]

(8)

and

βi(t) =
{

0 for t ∈ [0, ri]
φi(t) for t ∈ (ri, 1].

(9)

For i ∈ Inz(φ), define αi(t) = φi(t) and βi(t) = 0. If φ is
a geodesic path, then

φi(t) = αi(t) + βi(t) (10)

and
‖φ(t)‖0 = ‖α(t)‖0 + ‖β(t)‖0. (11)

Proof. Suppose that i ∈ Iz(φ). By definition, ti ≤ ri, so
that whenever αi(t) 6= 0, βi(t) = 0, and whenever βi(t) 6=
0, αi(t) = 0. Thus

αi(t) + βi(t) =


φi(t) for t ∈ [0, ti)
0 for t ∈ [ti, ri]
φi(t) for t ∈ (ri, 1].

From Lemma 1 we have that φi(t) = 0 for all t ∈ [ti, ri], so
that this reduces to (10). For i ∈ Inz(φ), (10) holds trivially.
Furthermore, this means that ‖φ(t)‖0 = ‖α(t)+β(t)‖0, but
since αi(t) 6= 0 whenever βi(t) = 0 and vice versa, this
reduces to (11).

We now introduce the concept of a “matching” between
the nonzero coefficients of x and the nonzero coefficients of
y, i.e., the elements of Sx and Sy . Matchings will provide a
useful method for characterizing a path φ.



Definition 1. A matching between Sx and Sy is sequence of
K pairs of indices,M = {(i1, j1), (i2, j2), . . . , (iK , jK)},
such that each ik ∈ Sx is listed exactly once and similarly
for each jk ∈ Sy .

Our goal is now to relate the task of finding the geodesic
path to the task of identifying the optimal matching. To-
wards this end, we first note that a particular path φ ∈
ΦΣK

(x, y) will only be “compatible” with certain match-
ings.
Definition 2. We say that the path φ ∈ ΦΣK

(x, y) is com-
patible with a matchingM if for any (i, j) ∈ M, we either
have that i, j ∈ Inz(φ) and i = j or that i, j ∈ Iz(φ) and
the ti and rj as defined in (6) satisfy ti ≤ rj .

The key idea is that if we match a pair (i, j) such that
i 6= j, then φi(t) must become zero before φj(t) becomes
nonzero.
Theorem 1. Suppose that φ ∈ ΦΣK

(x, y). If φ is a geodesic
path, then it is compatible with at least one matchingM.

Proof. For any i ∈ Inz(φ), we add (i, i) toM and let ` =
|Inz(φ)|. For the K − ` indices i ∈ Sx ∩ Iz(φ) and j ∈
Sy ∩ Iz(φ) let ti and rj be defined as in (6). We next sort the
indices so that i1, i2, . . . , iK−` and j1, j2, . . . , jK−` satisfy
ti1 ≤ ti2 ≤ · · · ≤ tiK−`

and rj1 ≤ rj2 ≤ · · · ≤ rjK−`
. Our

goal is to claim that by adding the (ik, jk) toM we have a
valid matching, i.e., tik ≤ rjk for all k. Towards this end,
observe that if φ is a geodesic path, then Corollary 1 implies
that

‖φ(t)‖0 = ‖α(t)‖0 + ‖β(t)‖0
= `+ |{ik : t < tik}|+ |{jk : t > rjk}|, (12)

where the second equality follows from the facts that: (i)
αik(t) 6= 0 if and only if i ∈ Inz(φ) or i ∈ Iz(φ) and
t < tik , and (ii) βjk(t) 6= 0 if and only if i ∈ Iz(φ) and
t > rjk .

We now assume for the sake of a contradiction that rjm <
tim for somem. Setting t ∈ (rjm , tim), we wish to calculate
‖φ(t)‖0. Since

t < tim ≤ tim+1 ≤ · · · ≤ tiK−`

we have that {ik : t < tik} must contain (at least)
tim , tim+1 , . . . , tiK−`

. Thus, we have that

|{ik : t < tik}| ≥ K − `− (m− 1). (13)

Similarly, since

t > rjm ≥ rjm−1 ≥ · · · ≥ rj1
we have that {jk : t > rjk} must contain (at least)
rj1 , rj2 , . . . , rjm . Thus, we also have that

|{jk : t > rjk}| ≥ m. (14)

Combining (13) and (14) and plugging these into (12) we
obtain that for t ∈ (rjm , tim),

‖φ(t)‖0 ≥ `+ (K − `− (m− 1)) +m = K + 1.

This contradicts the assumption that φ ∈ ΦΣK
(x, y), and

hence we must in fact have that rjm ≥ tim . Since this holds
for all m, we obtain thatM is a valid matching.

Thus, given any potential geodesic path φ, there is at least
one matching M compatible with φ. Now, supposing that
a matching M is given, we will attempt to determine the
shortest path φ∗M compatible withM. This will allow us to
find the geodesic path by finding the matchingM that mini-
mizes L(φ∗M). As a first step in this direction, the following
lemma provides a simpler characterization for any potential
geodesic path φ that is compatible with a given matching
M.
Lemma 2. Suppose thatM is a matching of Sx and Sy and
that φ ∈ ΦΣK

(x, y) is a geodesic path compatible withM.
Define λ : [0, 1]→ RK as

λk(t) = |αik(t)| − |βjk(t)|, (15)

where α(t) and β(t) are defined as in Corollary 1. Then
L(φ) = L(λ), and for all k

λk(0) = |xik | (16)

and

λk(1) =
{
|yjk | for k : jk ∈ Inz(φ)
−|yjk | for k : jk ∈ Iz(φ).

(17)

Proof. Since φ is compatible with M, we have that tik ≤
rjk . For k such that ik, jk ∈ Iz(φ), using the same reasoning
as in Corollary 1 we obtain

λk(t) =


|αik(t)| = |φik(t)| t ∈ [0, tik)
0 t ∈ [tik , rjk ]
−|βjk(t)| = −|φjk(t)| t ∈ (rjk , 1].

(18)

For k such that ik = jk ∈ Inz(φ), we have that

λk(t) = |αik(t)| = |φik(t)|. (19)

Combining (18) and (19) we obtain (16) and (17).
Finally, recall that each term in the summation (1) for

L(λ) is of the form√√√√ K∑
k=1

(λk(tm)− λk(tm+1))2
. (20)

Since we ultimately take a supremum over all possible par-
titions t̄, we are free to require that all partitions t̄ contain
tik , rjk for all k such that ik, jk ∈ Iz(φ). This implies that
for any k and for any pair tm, tm+1 ∈ t̄, sgn(λk(tm)) =
sgn(λk(tm+1)), sgn(φik(tm)) = sgn(φik(tm+1)), and
sgn(φjk(tm)) = sgn(φjk(tm+1)) for all k. Thus, each term
in (20) reduces to either

(φik(tm)− φik(tm+1))2

or
(φjk(tm)− φjk(tm+1))2

.

Thus, summing over all k and adding N −K zero terms we
obtain √√√√ N∑

i=1

(φi(tm)− φi(tm+1))2
.

Summing over all tm ∈ t̄ we obtain that L(λ) = L(φ).



Lemma 2 shows that any potential geodesic path φ that is
compatible with a matchingM can equivalently be thought
of as a path λ in RK between a pair of points, where the
points are almost entirely defined by the choice ofM— the
starting point is uniquely determined by M, and the end-
ing point is determined up to an unknown sign for k such
that jk ∈ Inz(φ). The power in viewing φ in this manner is
illustrated in the following theorem.
Theorem 2. Suppose that M is a matching of Sx and Sy
and let Knz = {k : ik = jk and sgn(xik) = sgn(yjk)
and Kz = {1, 2, . . . ,K} \Knz. Suppose thatM satisfies:
(i) for any ik ∈ Sx ∩ Sy such that ik = jm with k 6= m,
|xik |·|yjm | ≤ |xim |·|yjk |, and (ii) for any jk ∈ Sx∩Sy such
that jk = im with k 6= m, |xim | · |yjk | ≤ |xik | · |yjm |. Then
the shortest path that is compatible withM, φ∗, satisfies

L2(φ∗) =
∑
k∈Kz

(|xik |+ |yjk |)
2 +

∑
k∈Knz

(|xik | − |yjk |)
2
.

(21)

Proof. From Lemma 2, we have that any path that is com-
patible with the matching M defines a path λ such that
λk(0) = |xik | and λk(1) = ±|yjk |. Thus, any path φ com-
patible with M induces a path λ with starting point inde-
pendent of the choice of φ. The ending point is allowed an
unknown sign for λk(1) when k ∈ Knz, but for all k ∈ Kz

we again have that λk(1) is uniquely determined indepen-
dently of φ. We will now show that there exists a φ com-
patible withM such that the λ induced by this φ consists of
a straight line which has the shortest length among all ad-
missible choices of signs for λk(1) with k ∈ Knz. In this
case, there clearly cannot exist any shorter paths that admit
the same matching.

Towards this end, we define qk = |xik | + |yjk | and pk =
|xik |/qk. Next, consider the path defined by φ∗ = α∗ + β∗

where

α∗ik(t) =
{
xik − sgn(xik)qkt for t ∈ [0, pk)
0 for t ∈ [pk, 1]

for k ∈ Kz,

α∗ik(t) = xik − (xik − yjk)t for t ∈ [0, 1]

for k ∈ Knz, and α∗i (t) = 0 otherwise, and

β∗jk(t) =
{

0 for t ∈ [0, pk]
yjk − sgn(yjk)qk(1− t) for t ∈ (pk, 1]

for k ∈ Kz and β∗j (t) = 0 otherwise.
We now need to verify that φ∗ is compatible with the

matchingM. For φ∗ = α∗ + β∗, we clearly have that for
any (ik, jk) ∈ M such that k ∈ Knz, we have that ik = jk
and ik, jk ∈ Inz(φ). Thus, to verify that φ∗ is compatible
with M we need only check that tik ≤ rjk for k ∈ Kz.
Towards this end, we first must calculate φ∗i (t). There are
essentially five cases which must be considered.

Case 1: ik = jk and ik, jk ∈ Sx ∩ Sy . In this case

φ∗ik(t) =
{
α∗ik(t) for t ∈ [0, pk]
β∗ik(t) for t ∈ (pk, 1]

so that (φ∗ik)−1(0) = {pk}. Thus in this case we have that
tik = rjk = pk, so that tik ≤ rjk .

Case 2: ik 6= jk, ik ∈ Sx \ Sy , jk ∈ Sy \ Sx. In this case
we have that φ∗ik(t) = α∗ik(t) and φ∗jk(t) = β∗jk(t). Thus,
we again have that tik = rjk = pk and hence tik ≤ rjk .

Case 3: ik 6= jk, ik ∈ Sx ∩ Sy , and jk ∈ Sy \ Sx. In this
case, since ik ∈ Sx ∩ Sy but ik 6= jk, there must exist a jm
such that m 6= k and ik = jm. From assumption (i) above
we can show that pk ≤ pm, and thus

φ∗ik(t) =


α∗ik(t) for t ∈ [0, pk]
0 for t ∈ (pk, pm)
β∗jm(t) for t ∈ [pm, 1].

Thus, tik = pk. Since jk ∈ Sy \ Sx, we again have that
φ∗jk(t) = β∗jk(t) so that rjk = pk. Hence, tik ≤ rjk .

Case 4: ik 6= jk, ik ∈ Sx \Sy , and jk ∈ Sx ∩Sy . This case
is symmetric to Case 3. Since ik ∈ Sx \ Sy , we again have
that φ∗ik(t) = α∗ik(t) so that tik = pk. Since jk ∈ Sx ∩ Sy
but ik 6= jk, there must exist an im such that m 6= k and
im = jk. From assumption (ii) above we can show that
pm ≤ pk, and thus

φ∗jk(t) =


α∗im(t) for t ∈ [0, pm]
0 for t ∈ (pm, pk)
β∗jk(t) for t ∈ [pk, 1].

Thus, rjk = pk. Hence, tik ≤ rjk .

Case 5: ik 6= jk and ik, jk ∈ Sx ∩ Sy . Here, we have that
ik = jm with m 6= k and jk = in with n 6= k. From
assumption (i) above we can again show that pk ≤ pm, and
thus

φ∗ik(t) =


α∗ik(t) for t ∈ [0, pk]
0 for t ∈ (pk, pm)
β∗jm(t) for t ∈ [pm, 1].

Similarly, from assumption (ii) above we can show that
pm ≤ pk, and thus

φ∗jk(t) =


α∗im(t) for t ∈ [0, pm]
0 for t ∈ (pm, pk)
β∗jk(t) for t ∈ [pk, 1].

Thus, rjk = pk, and tik ≤ rjk .
Finally, one can easily check that if we form λ∗ using (15)

then we obtain

λ∗k(t) = |α∗ik(t)| − |β∗ik(t)|

=
{
|xik | − (|xik | − |yjk |)t for k ∈ Knz

|xik | − (|xik |+ |yjk |)t for k ∈ Kz.

Thus, λ∗ forms a straight line between λ∗(0) and λ∗(1) with
length given by (21). Furthermore, switching the sign on any
λ∗k(1) for any k ∈ Knz can only increase this length. Thus,
φ∗ is the shortest path compatible withM, as desired.

Note that the assumptions in Theorem 2 are trivially satis-
fied for any matching when Sx ∩ Sy = ∅. Thus, in this case



we have reduced the problem of finding the geodesic path to
the problem of identifying the matching between Sx and Sy
that minimizes (21). This may not seem like much of an im-
provement at first, since there are K! possible matchings, so
an exhaustive search for the optimal matching will be com-
putationally prohibitive for any moderately large value ofK.
However, we now demonstrate that such a search is unneces-
sary, and that the optimal matching can be obtained merely
by sorting the nonzeros of x and y appropriately.

Theorem 3. Suppose that Sx ∩ Sy = ∅. Let i1, i2, . . . , iK
denote the ordering of the indices of Sx that satisfies |xi1 | ≤
|xi2 | ≤ · · · ≤ |xiK |. Similarly, suppose that j1, j2, . . . , jK
is the ordering of the indices of Sy that satisfies |yj1 | ≥
|yj2 | ≥ · · · ≥ |yjK |. This matching will result in the minimal
length from (21), and hence the sparse geodesic distance is
given by

d2
ΣK

(x, y) =
K∑
k=1

(|xik |+ |yjk |)
2
.

Proof. This can be verified by simply considering the im-
pact of switching the order of any pair of indices and ob-
serving that it will necessarily increase L(φ∗). Specifically,
recall that

L2(φ∗) =
K∑
k=1

(|xik |+ |yjk |)2

=
K∑
k=1

|xik |2 + |yjk |2 + 2|xik | · |yjk |

= ‖x‖22 + ‖y‖22 + 2
K∑
k=1

|xik | · |yjk |

Observe that only the cross-product terms actually depend
on our choice ofM. Thus, suppose that we switch the order
of an arbitrary pair of indices. Without loss of generality,
we assume that we switch i1 with i2 to obtain φ̃. Then can-
celling out identical terms we obtain

L(φ̃)− L(φ∗) = 2 (|xi1 | · |yj2 |+ |xi2 | · |yj1 |
−|xi1 | · |yj1 | − |xi2 | · |yj2 |) .

(22)

Our goal is to show that if |xi1 | ≤ |xi2 | and |yj1 | ≥ |yj2 |,
then L(φ̃) − L(φ∗) ≥ 0, meaning that any other matching
would necessarily lead to a longer path and hence φ∗ is in
fact a geodesic path. Upon simplification, the inequality that
(22) is greater than zero is equivalent to

|xi2 |(|yj1 | − |yj2 |) ≥ |xi1 |(|yj1 | − |yj2 |).

But since |yj1 | ≥ |yj2 |, this is equivalent to

|xi2 | ≥ |xi1 |,

which is precisely what we were assuming. Thus, the match-
ing which swaps any pair of indices will result in a longer
path as desired, and the provided matching has the minimum
length.

One can easily use the same technique to verify the fol-
lowing corollary.

Corollary 2. Suppose that |Sx ∩ Sy| = ` and let i1 =
j1, i2 = j2, . . . , i` = j` ∈ Sx ∩ Sy be an enumer-
ation of the elements of this set. Let i`+1, i`+2, . . . , iK
denote the ordering of the indices of Sx \ Sy that satis-
fies |xi`+1 | ≤ |xi`+2 | ≤ · · · ≤ |xiK |. Similarly, sup-
pose that j`+1, j`+2, . . . , jK is the ordering of the indices
of Sy that satisfies |yj`+1 | ≥ |yj`+2 | ≥ · · · ≥ |yjK |. Let
Knz = {k : ik = jk and sgn(xik) = sgn(yjk) and
Kz = {1, 2, . . . ,K} \ Knz. This matching will result in
a path of length√∑

k∈Kz

(|xik |+ |yjk |)
2 +

∑
k∈Knz

(|xik | − |yjk |)
2

and thus we obtain that the sparse geodesic distance is
bounded by

d2
ΣK

(x, y) ≤
∑
k∈Kz

(|xik |+ |yjk |)
2+

∑
k∈Knz

(|xik | − |yjk |)
2
.

3. Example
In order to help interpret the geodesic distance, in Figure 2
we present the results of adding a fixed amount of noise to a
sparse image in two different ways. To form a sparse image,
we computed the wavelet transform of the “camerman” test
image and then zeroed out all but theK largest wavelet coef-
ficients. In Figure 2, the top row of images shows the effect
of adding noise only on the support of the nonzero wavelet
coefficients. This results in a geodesic distance equal to the
`2 distance. The bottom row of images shows the effect of
adding noise that sets some nonzero wavelet coefficients to
zero and forces previously zero-valued coefficients to be-
come nonzero. This results in a geodesic distance that is
larger than the `2 distance. Clearly, the visual impact of
these two different kinds of noise is very different, and this
difference is quantified much better by the sparse geodesic
distance than the `2 distance.

4. Discussion and Extensions
While sparsity is a general model of broad applicability, it
is also a fairly weak model in that the values and locations
of the nonzero coefficients of a sparse signal are arbitrary.
In many applications, sparse signals possess a secondary
structure on the nonzero coefficients. For example, wavelet
transforms of piecewise smooth signals are near sparse but
also tend to live on a connected tree structure in the wavelet
domain (Baraniuk 1999; Cohen et al. 2001; Baraniuk et
al. 2002). Such structured sparsity renders invalid some
subspaces in the union of subspaces ΣK (Blumensath and
Davies 2007). Structured sparsity has been exploited in
state-of-the-art image compression algorithms (Cohen et al.
2001) and in compressive sensing (Baraniuk et al. 2008;
Eldar and Mishali 2009). We hope to extend the sparse
geodesic distance to a structured sparse geodesic distance
(that follows the shortest path such that each point along the
path is a structured sparse signal). In order to do so, it will



dΣK
(x, x+ n) = ‖n‖2 dΣK

(x, x+ n) = ‖n‖2 dΣK
(x, x+ n) = ‖n‖2

dΣK
(x, x+ n) > ‖n‖2 dΣK

(x, x+ n) > ‖n‖2 dΣK
(x, x+ n) > ‖n‖2

(SNR = 10dB) (SNR = 20dB) (SNR = 30dB)

Figure 2: Images (x) corrupted with equal amounts of noise (n) but having different geodesic distances from the true sparse
image. The images in the top row have the minimum geodesic distance possible for a given signal-to-noise ratio (SNR), i.e.,
the geodesic distance dΣK

(x, x + n) is equal to the `2 distance ‖x − (x + n)‖2 = ‖n‖2. The images in the bottom row have
greater geodesic distances from the true image as compared to the top row, i.e., dΣK

(x, x + n) > ‖n‖2 For a given SNR, it is
thus clear that larger geodesic distances correspond to significant visual artifacts.

be necessary to reexamine the Theorem 2, since there are
potentially even more matchings M for which the path φ∗
will fail to be compatible with M. This will occur since
compatibility will now also require that φ∗ exhibits a kind
of structured sparsity — so even if φ∗ is K-sparse, it might
not lie within our set of interest. It seems unlikely that we
will obtain an analytical formula for such a geodesic dis-
tance, but it may be possible to use dynamic programming
techniques to calculate the distance efficiently.

Furthermore, while sparse signals are known to provide
a good approximation to many classes of signals, in many
cases it is more natural to consider related models such as
`p or weak-`p balls for p < 1. Just as we have done in this
work, one could define the geodesic distance for these sets

as the shortest path φ from x to y such that ‖φ(t)‖`p ≤ R or
‖φ(t)‖w`p ≤ R for all t. Since for these examples the ad-
missible set is again non-convex (and in some sense can be
thought of as a relaxation of ΣK), it is conceivable that the
techniques developed in this work could be useful in analyz-
ing these alternative notions of geodesic distance as well.
This could provide a more rigorous framework for mea-
suring geodesic distances between non-sparse signals com-
pared to the obvious approach of thresholding x and y to
obtain K-sparse signals and then measuring their geodesic
distance.

Finally, as noted in the Introduction, in the case where
data lies on a manifold, it has been shown to be extremely
beneficial to exploit this structure — particularly in the con-



text of semi-supervised classification (Belkin and Niyogi
2004; Niyogi 2008). In this setting we have a large amount
of unlabeled training data and a small amount of labeled data
from which we wish to learn a classifier. A potentially pow-
erful method for tackling this problem is to use the unlabeled
data to learn the geometric structure of the data set so that we
are able to obtain a more meaningful measure of the distance
between the labeled training data. In settings where we have
prior knowledge or reason to believe that our data should
be sparse with respect to a potentially completely unknown
dictionary, we could use the unlabeled data to learn a good
dictionary for the purpose of sparse representation using an
algorithm such as the KSVD (Aharon, Elad, and Bruckstein
2006). Using this learned dictionary we could then calculate
sparse geodesic distances between the labeled training data
as input to a nearest-neighbor or SVM-type classifier. We
plan to explore these and other ideas more extensively in a
sequel.
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