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ABSTRACT  
Construction machines and devices often generate distinct sound patterns while performing 

different tasks, making it possible to extract useful information about jobsites by placing 

microphones and recording and processing the generated audio files. This paper presents the 

results of current studies conducted by the authors on the necessary hardware and software for 

audio modeling of construction jobsites. As the first step, an audio-based system for recognizing 

activities of construction equipment has been devised. The presented system includes a de-noising 

algorithm for enhancing the quality of audio files as well as a Short-Time Fourier Transform 

(STFT) and Support Vector Machines (SVM) for classifying various activities. In the second step, 

three types of audio recorders (off-the-shelf microphones, contact microphones, and multichannel 

microphone arrays) and two types of installation settings (microphones mounted on board vs. 

installed on the job site) have been selected and several experiments were conducted to optimize 

the hardware settings, tune the algorithmic parameters, and evaluate the different approaches. The 

results show that for several different types of machines, the accuracy of the audio-based activity 

recognition system can exceed 85%. 
 

 

INTRODUCTION 
 

Activity analysis of construction heavy equipment and automatic recognition of various 

sub-activities (e.g., productive vs. non-productive and idle times) is the first major step toward 

productivity analysis of a full construction jobsite. In addition to productivity analysis, recognizing 

various activities taking place by construction machines have several other useful applications 

including scheduling and costs estimating purposes (Rashidi et al. 2014). 

The current states of practice and research for activity recognition of heavy equipment at 

construction jobsites include implementing active sensors (GPS, MEMS devices such as 

accelerometers, etc.) and/or passive (processing images/videos using computer vision algorithms) 

sensors. (Ahn et al. 2015; Brilakis et al. 2011; Golparvar-Fard et al. 2013; Rezazadeh and McCabe, 

2012; Rashidi et al. 201; Gong et al. 2011; and Akhavian and Behzadan, 2013).   

The authors of this paper have recently initiated a new line of research into the use of audio 

signals for activity analysis of heavy equipment and thus, acoustical modeling of construction 

jobsites. The idea is simple: construction machinery and other devices often generate distinct 

sound patterns while performing their routine tasks at jobsites and it is possible to extract useful 
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information by recording and processing generated audio signals at various locations of a job site. 

This research aims to bring some of the same tools that have recently been developed in other 

application areas to bear on the problem of acoustical modeling of construction operations. This 

builds on recent success in a range of other promising applications, including speech recognition, 

audio-based navigation of robots, Sound Navigation and Ranging (SONAR) for exploring and 

mapping oceans and waves (underwater acoustics), and applying ultrasonic signal processing for 

Condition Based Maintenance (CBM) approaches in manufacturing settings just to name a few 

(Bengtsson et al. 2004; Greenemeier 2008). 

Despite the potential for possible applications, there has been little prior work studying the 

implementation of audio signal processing techniques in the construction engineering and 

management domain. In comparison with other active and passive activity recognition methods, 

audio signals possess the following advantages: 
 

- The majority of active sensors (GPS, accelerometers, etc.) need to be directly mounted 

on the equipment. In addition, for each machine, at least one sensor is required. As explained in 

this paper, this is not a limitation for an audio-based activity recognition method. Microphones can 

be installed in various locations at the jobsite and one microphone is usually able to cover activities 

of multiple machines. 

- Computer vision methods are very sensitive to environmental factors such as lighting 

conditions and occlusions. In addition, limited field of view of cameras is another major drawback 

for computer vision methods. Microphones and audio signals are more resilient against the above-

mentioned limitations. 

- Compared to video data, audio files have lower data rates and are computationally more 

efficient. 
 

Choosing the optimal hardware (type and locations of microphones) and software 

(selecting proper algorithms and tuning algorithmic parameters) is the first stage for acoustical 

modeling of real-world construction jobsites.  
 

HARDWARE SETTING: DIFFERENT TYPES OF MICROPHONES 
 

Microphones are the primary devices for recording audio. Each microphone contains a 

surface or moving diaphragm designed to capture electroacoustic waves and generate a 

corresponding electronic signal. Common approaches for classifying microphones are based on 

either pickup pattern or type of transducer (Ballou 2015):  
 

- Pickup pattern refers to how the device discriminates between the various directions of 

incoming sound. Some types of microphones under this classification scheme are omnidirectional 

microphones, bidirectional microphones, and unidirectional microphones.  Pickup pattern is an 

important factor for acoustical modeling of construction jobsites since in a cluttered site, several 

pieces of construction devices and machines might work simultaneously at different 

locations/directions.   

- Transducer refers to the device which converts the physical stimulation to an electrical 

signal. Common types of microphones classified by transducer are carbon microphones, crystal 

and ceramic microphones, dynamic microphones, condenser microphones, and electret condenser 

microphones. 
 

Condenser microphones and a variant of so called MEMS (Micro-Electro-Mechanical 

Systems) microphones are the type of microphone built into the Zoom H1 handy recorder and the 
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XMOS microphone array board, respectively. According to Yamaha (2016), condenser 

microphones have good sensitivity to all frequencies, but are highly susceptible to structural 

vibration and humidity.  

In this research, and considering the requirements of construction jobsites, three types of 

microphones has been selected (Figure 1): 1) an off-the-shelf microphone (Zoom H1 digital handy 

recorder) 2) Korg CM-200 clip-on contact microphone; and 3) a multichannel microphone array 

(xCORE-200). A brief description of the contact microphones and microphone arrays is presented 

here: 
 

- Contact microphones: Contact microphones are built with a unidirectional, piezoelectric 

transducer, which is designed to be less susceptible to air-carried sound waves. The Korg CM-200 

microphone, selected for data collection purposes in this research, is commonly used in 

applications that involve capturing sound from a particular music instrument when recording or 

practicing with an entire music band. Contact microphones have great potential for on-board 

applicability within heavy construction equipment with the advantage of not being liable to 

structural vibrations, as opposed to condenser microphones (Figure 2). 
 

- Microphone arrays: A microphone array is constituted by a group of two or more 

microphones working in tandem, commonly arranged in linear, rectangular, and circular patterns. 

These microphones are usually omnidirectional; however, some microphone arrays are built 

completely by directional microphones or a combination of omnidirectional and directional 

microphones (Brandstein and Ward 2001). For this project, an XMOS xCORE-200 has been 

chosen.  The applications for this type of array-based microphones are based on beamforming 

techniques and include: speech enhancement, speech recognition, source localization, noise 

reduction, echo cancellation, and separation of acoustic signals.  

The XMOS xCORE-200 microphone array board, is equipped with seven omnidirectional 

MEMS microphones with pulse density modulation (PDM) output, a digital analog converter 

(DAC), a processor with sixteen 32 bit logical cores, on-board low-jitter clock sources for multiple 

clocking options, four configurable buttons, 13 LED indicators, a USB 2.0 port, a RJ45 Ethernet 

port, a 3.5 mm audio jack, and other components depicted in Figure 2. The seven microphones 

built into this board are targeted, but are not strictly limited to, Voice User Interface (VUI) 

applications. As shown in Figure 1, one microphone is placed at the center of the board and the 

remaining six are distributed equidistant around the board edge. 

Figure 1: Different types of microphones used in the project: Zoom H1 digital handy 

recorder mounted on a tripod (left); Korg CM-200 clip-on contact microphone attached to 

CAT loader (middle); xCORE-200 microphone array evaluation board – top (left). 
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RESEARCH METHODOLOGY: AUDIO-BASED ACTIVITY ANALISYS OF 

CONSTRUCTION HEAVY EQUIPMENT 
 

In order to assess the hardware and software requirements for acoustical modeling of 

construction jobsites, a basic audio-based model for activity analysis of construction heavy 

equipment has been devised by the authors. This algorithm consists of the following major 

components and algorithms (Figure 2):   
 

 
Figure 2: The audio-based model for activity analysis of construction heavy equipment. 

- A denoising algorithm is used to reduce the background noise and enhancing quality of 

the audio signal. In this research, the denoising algorithm proposed by Rangachari and Loizou 

(2006) has been selected and implemented. 

- A short-time Fourier transform (STFT) is used to covert the audio signal into a time-

frequency representation. 

- Support Vector Machines (SVM) have been implemented as the major machine learning 

tool for training and testing the system for identifying different activities within each captured 

audio signal. To achieve this goal, the authors used the LIBSVM MATLAB package. It is well 

known that the performance of the SVM algorithm highly depends on the selected kernel function 

(Rashidi et al. 2016). In this research, the two more common kernel functions (linear and radial 

basis function) has been selected and experiments have been conducted using each kernel 

separately. 

- A window filtering approach is used to label time frames of different activities. The size 

of the window will vary in different cases, but in general the small window can be set as a quarter 

second and the large window can be a second or two seconds.  

More detailed information about the implemented audio-based system can be found at 

(Cheng et al, 2016). Finally, it is important to mention that in this paper, we only focus on activity 

analysis of single machines. The more complicated (and realistic) case of dealing with multiple 

machines simultaneously is not within the scope of the current work and will be investigated by 

the authors in the future. 

 

EXPERIMENTAL SETUP AND PRELIMINARY RESULTS 
 

In order to evaluate the performance of the audio base activity analysis system under 

various hardware and software settings, a number of construction machines from different jobsites 

have been selected. Audio data sets from individual pieces of equipment performing routing 

actions were captured using four recording devices simultaneously (Figure 3): one Zoom H1 

digital handy recorder was placed on a tripod on site; one XMOS xCORE-200 USB microphone 

array board connected to a laptop computer on site; another Zoom H1 handy recorder placed on 

board the heavy equipment, usually inside the cup holder; and the Korg CM-200 contact 

microphone clamped to a flat surface inside the cabin of the construction equipment. The XMOS 

microphone array was interfaced to a Windows PC using the manufacturer’s USB Audio Class 2.0 

Evaluation Driver for Windows and audio was recorded through Audacity®, an open source 

software. 

Audio 
Recording

Denoise STFT SVM
Window 
Filtering

Predicted 
Labels
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In addition to audio recording, a video sample was taken using a regular cell phone camera 

to serve as a reference for manual action classification into major activities (e.g., digging, loading, 

dumping, crushing rock) and minor activities (e.g., swinging, maneuvering, extending arm). Once 

all recording devices were running, an air horn was used to generate a loud noise intended to be 

captured on all recordings. That would be the reference signal for synchronizing all data. 

Figure 4 illustrates the generated results for one sample machine, A CAT 320D Backhoe 

excavator, using a Zoom H1 digital handy recorder placed relatively close to the machine on the 

jobsite. The presented results are based on implementing SVM with linear kernel. The top part of 

the figure presents the normalized frequency for the machine’s audio signal, while the middle and 

bottom parts show the actual (blue) versus predicted (black) activity labels and over the audio 

recording time period. As indicated in these figures, there is an excellent correlation between the 

actual and predicted results generated for the CAT backhoe excavator. 

 
 

Figure 3: Setup process for audio collections using microphone array (left) and contact 

microphone (middle); Simultaneous video recording for generating the ground truth data 

(right). 
 

Details of comparison results for different machines and under different hardware and 

software settings have been summarized in Tables 1-3 and Figure 5. By careful observation of 

these results, the following conclusion marks can be achieved: 

1-  For on board settings, using contact microphones generates slightly better results and thus, is 

a better option (Table 1). 

2- The current case studies show that placing regular microphones on jobsites generates better 

results compared to placing contact microphones in the cabin. One reason for this phenomenon 

is that the contact microphones directly mounted on board would be affected by engine noise 

and vibrations; however, further investigations using several other case studies and under 

various jobsite conditions might be required to fully substantiate this conclusion (Tables 2 and 

3).   

3- In most cases, especially for recognizing major activities, the radian basis function kernel 

outperforms the linear kernel (Figure 5).  

4- There is no significant difference between using regular microphones and microphone arrays 

for recognizing activities of single machines. The main reason is that there is only one source, 

and thus only one direction for the generated audio signals. It is anticipated that there will be 

a significant difference between the performance of the regular microphones and microphone 
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arrays in the case of existence of multiple machines (or multiple sources of generating audio). 

Microphone arrays will be able to detect multiple audio directions from multiple audio sources. 

The authors will investigate this condition (multiple machines working simultaneously in the 

job site) in the future.   
 

 

 
Figure 4: Results for CAT 320D backhoe excavator 

  

Table 1: Comparison between contact and regular microphones (both on board/   SVM 

with RBF kernel). 

Machine 
Contact Microphone Regular microphone 

Major activity Minor activity Major activity Minor activity 

JD50D Compact Backhoe 72.08% 74.02% 71.14% 82.78% 

Ingersoll Rand Compactor 80.34% 7.83% 80.07% 1.98% 
 

Table 2: Comparison between contact microphone (on board) and regular microphone (on 

site). 

Machine 
Contact Microphone (on board) Regular microphone (on site) 

Major activity Minor activity Major activity Minor activity 

CAT 320D Backhoe 

Excavator 
80.78% 38.26% 81.09% 71.48% 

JD 333E Compact Loader 73.42% 95.68% 86.54% 90.11% 

JD50D Compact Backhoe 72.08% 74.02% 86.65% 57.74% 

Ingersoll Rand Compactor 80.34% 7.83% 81.58% 32.03% 
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Table 3: Comparison between on site and on board regular microphones. 

Machine 
On site On board 

Major activity Minor activity Major activity Minor activity 

JD50D Compact Backhoe 86.65% 57.74% 71.14% 82.78% 

Ingersoll Rand Compactor 81.58% 32.03% 80.07% 1.98% 
  

 
Figure 5: Summary of the results for implementing RBF and Linear Kernels for activity 

recognitions of machines (major activities). 

    
SUMMARY AND CONCLUSION 

 

This paper presented an innovative audio-based method for activity analysis of heavy 

equipment and acoustical modeling of construction jobsites. A basic audio based activity 

recognition model has been developed for single machines and has been tested under various 

hardware and software settings. The experimental settings include applying three major types of 

microphones (off-the-shelf microphones, contact microphones; and microphone arrays) and two 

placement settings (on board vs. on site). The preliminary comparison results have been presented 

in the previous sections. In addition, the audio-based model has been tested using two major types 

of kernels (linear and RBF) and the results indicated the better performance of the RBF kernel in 

most cases. As the extension of the current research, the authors plan to work on the following 

items in future: 

- Implementing and testing the proposed audio-based model using more data sets and under 

various conditions 

- Evaluation and testing the required hardware and software settings for multiple machines 

working at the construction jobsites 

- Developing more robust algorithms to recognize construction activities into more detailed 

items (splitting minor and major activities into sub-activities) 
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