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ABSTRACT

Recent literature has developed methods for localizing a low-
dimensional vector w from paired comparisons of the form
“w is closer to p than q,” where p and q are selected from
a fixed set of landmark points and w does not change over
time. In this work, we consider a time-varying extension of
this problem, in whichw evolves according to some unknown
dynamics model. We consider the task of actively selecting
informative paired comparisons between landmark points to
jointly estimate the state trajectory and identify the true dy-
namics model from a finite set of candidate models. Leverag-
ing information-theoretic insights, we propose selecting pairs
that simultaneously maximize information gain about both
the trajectory and dynamics model, and propose a Bayesian
method for tracking and system identification. We demon-
strate the efficacy of our approach with numerical simula-
tions, showing that our method is able to jointly estimate the
state trajectory and identify the correct dynamical model.

Index Terms— paired comparisons, time-varying mod-
els, dynamical systems, Bayesian inference

1. INTRODUCTION

The problem of estimating a vector using paired comparisons
between a fixed set of landmark points has been studied in
several settings where measurements are only available as
comparisons between distances. For example, in a simple
two- or three-dimensional setting one might wish to triangu-
late an object’s location using an array of sensors, where the
only available information is which of any two given sensors
the object is closer to (since exact sensor range measurements
might be unavailable or too noisy to be utilized directly). In
higher dimensions, paired comparisons have been studied in
the context of recommender systems, where users provide
preferences between pairs of items [1, 2, 3, 4, 5, 6, 7, 8].
This idea underlies the ideal point model [9], in which each
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user’s preferences are encoded in a feature space as a vec-
tor that represents the user’s “ideal” item, and responses to
paired comparisons between items are determined by which
of the two items is closer to the user’s ideal point. Similar
models have been used for learning rankings over items [10]
and non-metric multidimensional scaling [11, 12, 13].

Many of these applications can be naturally extended
to include time-varying dynamics and system identification.
For instance, when performing triangulation using pairs of
sensors, the localized object may be one of several vehicles
navigating along a path. In this case, one may wish to jointly
estimate the vehicle’s position, velocity, and acceleration
(state estimation), as well as identify the vehicle type from
its dynamics (system identification). In a recommender sys-
tem, a user’s preferences may change with time, and these
changes may be characteristic of one of several user pheno-
types. While the task of selecting pairs and estimating the
state vector has been studied in the static case [14, 15, 16, 17],
the time-varying setting has not been addressed.

Mathematically, we consider the problem of tracking the
evolution of a vector w ∈ Rd which varies over time accord-
ing to an unknown dynamics model f as

xt =

[
wt
vt

]
, xt+1 = f (xt) + νt+1, x0 ∼ P0, (1)

where vt ∈ Rl is a vector of latent state variables (e.g., ve-
locity and acceleration) which together with wt comprise the
state vector xt ∈ Rd+l. The dynamics are perturbed by in-
novation noise νt+1 ∼ N (0,R) with known covariance R.
We assume that f is drawn from a finite set of candidate dy-
namics models F = {f1, f2, . . . fK} with prior distribution
pf (fi), and that the initial state is drawn from a known prior
distribution P0.

At each time step t = 0, . . . , T , we can access the state
only through binary measurements consisting of paired com-
parisons that indicate which of two landmark points wt is
closer to. Our task is to actively select a sequence of paired
comparisons between landmark pairs to jointly estimate the
state trajectory x0:T and identify the true dynamics model f .

In Section 2, we extend ideas for active selection of
paired comparisons from the static setting to the time-varying
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Fig. 1. We consider the problem of using paired comparisons
to jointly infer the trajectory of the statew0:T and the dynam-
ics model f ∈ F that describes its evolution.

setting, and use these insights in Section 3 to describe our
Bayesian particle filter-based method for measurement selec-
tion, state tracking, and system identification. We illustrate
the operation of our method with an example in Section 4,
and evaluate its performance in Section 5.

2. MEASUREMENT SELECTION

At each time step t we take a measurement of the form
‖pt −wt‖ ≷ ‖qt −wt‖, where pt, qt are selected from a
known set of landmark points X ⊂ Rd. Geometrically, this
paired comparison indicates that wt lies on one side of the
hyperplane bisecting points pt and qt, as illustrated in Figure
1. This hyperplane is defined by normal vector at = pt−qt

‖pt−qt‖

and intercept bt =
‖pt‖2−‖qt‖2
2‖pt−qt‖ . However, in many practical

applications we can access only noisy measurements, where
comparisons are more likely to be erroneous when wt is
equidistant from the landmark points (i.e., close to the bisect-
ing hyperplane). To represent this type of observation noise,
we denote the tth measurement by Yt ∈ {0, 1}, where Yt = 1
indicates that wt is closer to pt and Yt = 0 indicates that wt
is closer to qt. We then model Yt with the logistic likelihood

p(Yt = 1 |wt) =
1

1 + e−k(a
T
t wt−bt)

, (2)

where k represents the signal-to-noise ratio of the measure-
ments. We assume that Yt depends only onwt; that is, letting
A ⊥⊥ B | C denote that A is conditionally independent of B
given C, we have Yt ⊥⊥ wu | wt for u 6= t, Yt ⊥⊥ v0:T | wt,
and Yt ⊥⊥ f | wt. We adopt a Bayesian framework, repre-
senting our knowledge of the state xt and dynamics model
f by the posterior densities p (xt | y0:t−1) and p (fi | y0:t−1),
where yt denotes an observed instantiation of Yt.

A natural question arising in this stochastic measurement
model is how to select the measured paired comparison at
each time step. In the static setting, it has been shown that
some measurements become more informative than others as
w is localized, and dramatic improvements in inference are
possible by adaptively selecting landmark points [17, 14]. In
the time-varying setting considered here, at each time step we
wish to select the landmark points (pt, qt) defining measure-
ment Yt that provide the most information about the trajec-
tory x0:T and the dynamics model f . We propose a similar
approach as [14] by selecting paired comparisons that max-
imize the information gain [18] each measurement provides
about both the state trajectory and dynamics model, defined
as the mutual information between the measurement Yt and
unknown trajectory x0:T and dynamics f , conditioned on the
previous measurements y0:t−1:

(pt, qt) = argmax
p,q∈X

I (Yt ; x0:T , f | y0:t−1) . (3)

Intuitively, this quantity represents the amount a paired com-
parison decreases our uncertainty about the trajectory and dy-
namics model.

Because we seek to jointly infer the trajectory and dy-
namics model, it is at first unclear whether one should select
measurements that are more informative about the trajectory
or about the model. However, the conditional independence
of the measurement model in (2) greatly simplifies this design
choice: applying the chain rule of mutual information [19] to
(3) and simplifying using the conditional independences ad-
mitted by our model yields

I(Yt;x0:T , f | y0:t−1) = I(Yt;w0:T ,v0:T , f | y0:t−1)
= I(Yt;w0:T | y0:t−1) + I(Yt;v0:T |w0:T , y0:t−1)

+I(Yt; f |w0:T ,v0:T , y0:t−1)

= I(Yt;w0:T | y0:t−1)
= I(Yt;wt | y0:t−1) + I(Yt;w0:t−1,wt+1:T |wt, y0:t−1)

= I(Yt;wt | y0:t−1).

Therefore, jointly maximizing the information gain with re-
spect to the entire state trajectory and underlying dynamics
model is equivalent to simply selecting paired comparisons
that maximize the information gain about wt.

3. METHODS

Unfortunately, the measurement likelihood in (2) does not
admit a closed-form expression for the information gain
I(Yt;wt | y0:t−1) of a candidate pair, and approximating it
with samples from the posterior p(wt|y0:t−1) is computation-
ally prohibitive when evaluating a large pool of pairs. Instead,
we approximate the action of maximizing information gain by
using the mean-cut max-variance (MCMV) selection strategy
of [14], selecting the pair whose bisecting hyperplane cuts



Algorithm 1 MCMV-DF using particle filter
1: Draw N particles from p0(x) for each candidate dynam-

ics model
2: for t = 1, . . . , T do
3: Estimate state x̂t using (6)
4: Estimate µt and Σt from all particles using (4)-(5)
5: Pβ ← downsample set of candidate pairs at rate β

6: (pt, qt)← argmaxPβ

√
aTpqΣtapq −

∣∣aTpqµt − bpq∣∣
7: yt ← PairedComparison(pt, qt), y0:t ← yt∪y0:t−1
8: for i = 1, . . . ,K do
9: Resample particles using likelihood (2)

10: Propagate particles through dynamics (1)
11: end for
12: Update p(fi|y0:t) using (7)
13: end for
14: f ← argmaxfi p(fi)

through the posterior mean in the direction of maximum vari-
ance. Specifically, we select measurements by evaluating an
acquisition function for each candidate pair in a downsam-
pled pair pool and selecting the maximizing pair, as described
in Algorithm 1. This procedure has a computational com-
plexity that scales favorably with the number of candidate
pairs, and is a provable approximation to information gain
maximization [14].

To select measurement pairs using MCMV, we need to
evaluate the posterior mean µt := Ewt [wt|y0:t−1] and co-
variance Σt := Ewt

[
(wt − µt)T (wt − µt)T |y0:t−1

]
, which

can be computed as

µt =
∑
i

Ewt [wt|fi, y0:t−1] p(fi|y0:t−1) (4)

Σt =
∑
i

Ewt

[
wtw

T
t |fi, y0:t−1

]
p(fi|y0:t−1)− µtµTt . (5)

After taking a measurement, we update the posteriors over
xt and f , estimate the state as the posterior mean

x̂t := E[xt|y0:t−1] =
∑
i

Ext [xt|fi, y0:t−1] p(fi|y0:t−1), (6)

and update the dynamics model posterior as

p(fi|y0:t) =
p(yt|fi, y0:t−1)p(fi|y0:t−1)

p(yt|y0:t−1)

=
Ewt [p(yt|wt)|fi, y0:t−1] p(fi|y0:t−1)∑
j Ewt

[
p(yt|wt)|fj , y0:t−1

]
p(fj |y0:t−1)

. (7)

We observe that to calculate each of these quantities we can
simply track a separate state posterior p(xt|y0:t−1, fi) for
each candidate dynamical system i = 1, . . . ,K, from which
we can compute the necessary expected values.

Because our pairwise measurement process (2) is nonlin-
ear, we cannot use the closed form updates of the Kalman fil-
ter to track each posterior p(xt|y0:t−1, fi). Instead, we use

Fig. 2. Stylized demonstration of MCMV-DF. (a) Poste-
rior position distributions at three time instants. Surface
plots: state posterior p(wt|y0:t−1); red circles: particles
representing p(wt|y0:t−1, fi) ∀ fi with opaqueness repre-
senting p(fi|y0:t−1); cyan target: true position wt; yel-
low line: hyperplane corresponding to selected measurement
(pt, qt). (b-c) True trajectory and recovered marginal pos-
terior p(wt|y0:t−1) for horizontal and vertical components
of position; shaded region corresponds to 95% confidence
interval on posterior. (d) Posterior over dynamics models
p(fh|y0:t−1) and p(fv|y0:t−1).

the particle filter, which allows us to incorporate both the
nonlinear likelihood and an arbitrary (potentially nonlinear)
candidate dynamics models [20]. In the particle filter frame-
work, the required probability distributions are represented
by Monte Carlo particles which can be propagated through
the candidate dynamics models fi. We use N particles to
represent the state posterior associated with each candidate
dynamics model, resulting in a total of NK tracked particles.
We present our algorithm in its entirety, called mean-cut max-
variance dynamic filtering (MCMV-DF), in Algorithm 1.

4. EXPLANATORY EXAMPLE

Figure 2 illustrates our approach with a stylized numerical ex-
ample. We track a point w ∈ R2 evolving purely along the
horizontal axis according to a spring-like system, with latent
state v ∈ R4 representing velocity and acceleration in each
dimension. We consider K = 2 candidate dynamics mod-
els: the true dynamical system fh, and a similar system fv
that evolves purely along the vertical axis. We run MCMV-
DF for T = 100 time steps and observe the inferred state
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Fig. 3. Tracking performance as observation noise (“obs”)
and innovation noise (“inn”) levels change; each point shows
the median over 200 trials. (a) Trajectory reconstruction ac-
curacy, shown as error ‖xt − x̂t‖2 at each time step. (b) Dy-
namical system identification, shown as posterior probability
of true system p(f |y0:t−1).

and dynamics model posteriors. As MCMV-DF converges to
correctly identify the true (horizontal) dynamical system fh
at approximately t = 40 (as shown in (d) by the posterior
probability p(fh|y0:t−1) approaching unity), the vertical po-
sition estimate becomes more accurate. This is reflected in
both the tight distribution of probability mass around ŵv(t)
in (a) and (c) and the closer to vertical orientation of the hy-
perplanes corresponding to measurements y25 and y75 in (a).
This vertical orientation maximizes variance after the trajec-
tory has been identified as purely along the horizontal axis.
As the measurements begin to focus on accurately estimating
the horizontal position, the horizontal position estimates also
become more accurate, as displayed in (b).

5. NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance of MCMV-
DF with simulations on synthetic data, evaluating the effects
of observation and innovation noise as well as the number of
candidate dynamical systems K on the accuracy of trajectory
estimation and system identification. In both experiments, we
randomly generate an initial state x0 ∼ N (0, I) with dimen-
sionality d = l = 4 and compute its trajectory using (1) and
f with R = σ2I for various settings of σ2. We generate
1500 landmark points, distributed in R4 as N (0, σ2

pI) with
σ2
p = 9, and use the downsampling rate β = 0.01 when se-

lecting landmark points for measurements.
In each trial, we generate K random linear dynamics

models f1, . . . , fK by placing d + l eigenvalues in complex
conjugate pairs on the unit circle (making the resulting sys-
tems marginally stable) at angles distributed as θ ∼ U

[
π
6 ,

π
3

]
(controlling the velocity of the resulting trajectories), with
random orthogonal eigenvectors. We arbitrarily select one of
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Fig. 4. Tracking performance as the number of candidate dy-
namics models K increases; each point shows the median
over 200 trials. (a) Trajectory reconstruction accuracy, shown
as error ‖xt − x̂t‖2 at each time step. (b) Dynamical system
identification, shown as posterior probability of true system
p(f |y0:t−1).

the K candidate dynamics models as the true system.
In Figure 3, we evaluate the accuracy of tracking and iden-

tification with four different noise levels. To set the observa-
tion noise level, we vary the signal-to-noise constant k in (2):
“low” observation noise corresponds to k = 10 (resulting in
approximately 5% incorrect comparisons), and “high” obser-
vation noise corresponds to k = 1 (resulting in approximately
25% incorrect comparisons). The “low” and “high” values of
innovation noise are σ2 = 10−3 and σ2 = 10−2, respec-
tively. Figure 3 shows the tracking error of the entire state
x, ‖xt − x̂t‖2, and posterior probability of the true dynamics
model p(f |yt−1) over a horizon of T = 40 time steps. We ob-
serve that MCMV-DF successfully identifies the true dynam-
ics system in a modest number of measurements and quickly
achieves low state estimation error. Increasing the observa-
tion and innovation noise reduces estimation accuracy and in-
creases the number of time steps required to identify the true
dynamical system, but our method still tracks the state and
eventually recovers the correct dynamics model.

In Figure 4, we evaluate the effect of the number of candi-
date dynamics models K on MCMV-DF’s performance with
fixed noise levels k = 3 (resulting in approximately 15% in-
correct comparisons) and σ2 = 5×10−3. We observe that the
higher complexity of the set of candidate systems F resulting
from increasingK makes the problem harder, reducing track-
ing accuracy and increasing the number of time steps required
to identify the true dynamical system; however, system recov-
ery is still possible.

Overall, these results demonstrate MCMV-DF’s ability to
successfully estimate the state trajectory from intelligently se-
lected paired comparisons and discern between multiple can-
didate dynamics models. Further study is warranted to evalu-
ate MCMV-DF’s performance in real-world systems.
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