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ABSTRACT

We develop a framework for localizing an unknown point w
using paired comparisons of the form “w is closer to point
x; than to x;” when the points lie in a union of known sub-
spaces. This model, which extends a broad class of existing
methods to exploit union of subspaces structure, provides a
powerful framework for using the types of structure found
in many practical applications. We divide the problem into
two phases: (1) determining which subspace w lies in, and
(2) localizing w within the identified subspace using existing
techniques. We introduce two algorithms for determining the
subspace in which an unknown point lies: the first admits a
sample complexity guarantee demonstrating the advantage of
the union of subspaces model, and the second improves per-
formance in practice using an adaptive Bayesian strategy. We
demonstrate the efficacy of our method with experiments on
synthetic data and in an image search application.

Index Terms— Paired comparisons, Bayesian, stochas-
tic, perceptual compression, PICASSO

1. INTRODUCTION

In many applications we are interested in learning a prefer-
ence function over a set of points {z; }I_; C R? using paired
comparisons of the form “w is closer to point x; than to
x;.” Algorithms for learning preference functions or rank
orderings from this type of observation have been explored
in a wide variety of settings [1-8]. However, the majority of
this literature imposes no structural assumptions on the points
{x;}. As aresult, the number of paired comparisons required
typically scales at least linearly with the size n of the set.
Unfortunately, obtaining this volume of training data may of-
ten be infeasible, especially when the paired comparisons are
supplied by human subjects.

To address this challenge, a powerful approach is to ex-
ploit latent structure in the {x;} to reduce the required num-
ber of comparisons. As an example, suppose that the {x¢; } can
be embedded in R* where k < d and that our comparisons
are of the form ||w — x;|| = ||w — x;||, where w € R is
the target point of a search. In this case our problem reduces
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Case (c): points in different
subspaces (i* # o(i), ©* # o(j)):
P(Y =0lw,i*) =05

Case (a): all points in same

subspace (i* = o (i) = o(j)):
P(Y =0lw,i") = %
1re (@b

Case (b): only one point shares subspace
with reference (i* = o(i), ©* # o(j)):
P(Y =0lw,i")=1-p

Fig. 1. The measurement probability model (1) differs based
on the subspace membership of w, x;, and x;.

to that of estimating w and the query complexity can be re-
duced from depending on the number of items 7 to depending
instead only on the dimension k [4,9, 10].

This model, however, is inappropriate for the many prac-
tical applications where points lie not in all of R¢, but rather
in a union of subspaces {SL}ZKzl C R? [11]. The union of
subspaces model gives us the flexibility to model settings
where distances are well-defined only between subsets of
points [12]. For example, in Section 4 we consider an ap-
plication of our method to localizing a point in the space of
images of various classes (e.g., cars, horses, and dogs) where
each class will correspond to a subspace in the union. Here,
we expect that the distances (in feature space) between im-
ages of cars are meaningful, and that the distance between
two cars will be much less than the distance between a car and
horse. However, in general comparing the distance between a
car and horse and the distance between a horse and dog will
not be meaningful.

The fundamental fact exploited by our algorithm is that
comparisons involving points within the same subspace and
comparisons between points in different subspaces will be
governed by different probability models: when compared
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points are in the same subspace, the comparison is meaning-
ful and standard algorithms for localization apply, but com-
parisons between different subspaces are not meaningful and
return random results. We use this asymmetry to infer the
true subspace S;~ that w belongs to, allowing us to exploit
standard methods to localize w within this subspace.

Our main contributions in this paper are two variants of
an algorithm, Pairwlse Comparisons for Active Subspace
SelectiOn (PICASSO), to identify the subspace .S;« that w
lies in using paired comparisons between points x;, ; €
UfilSZ-. The first variant, Distilled PICASSO, admits sample
complexity bounds that describe the number of measure-
ments needed to correctly identify the true subspace .S;«.
The second variant, Bayesian PICASSO, tracks the posterior
P (i=14*) and uses it to adaptively select measurements,
improving performance in practice.

To the best of our knowledge, this is the first work to apply
a union of subspaces model to point localization using paired
comparisons. Once PICASSO identifies a subspace, the al-
gorithm moves into a second phase where a state-of-the-art
Bayesian embedding search method is deployed to localize
w within that subspace [13].

2. THE PICASSO ALGORITHM

We first describe the probability model and general strategy
underlying both PICASSO variants, then outline the specifics
of each algorithm.

2.1. Probability model

The (potentially noisy) response Y (x;, ;) indicates which
of the points x; or x; the target search point w is closer to.
In our notation convention, Y (x;,x;) = 0 indicates the re-
sponse that x; is perceived to be closer, and Y (z;, z;) = 1
indicates the response that x; is perceived to be closer.

In our model, the probability of obtaining the measure-
ment Y (;, x;) = 0 depends on the subspace membership of
w, T;, and x;:

e If x;, x;, and w are all in the same subspace, the mea-
surement is well-defined and depends on the relative
distances of «; and x; from w. In this case, Y = 0 is
more likely when x; is closer to w than x; is.

e If w and x; are contained in the same subspace but x;
is in a different subspace, only the distance between w
and x; is well defined and we expect to obtain ¥ =
0. Similarly, if w and x; are contained in the same
subspace but x; is in a different subspace, we expect to
obtain Y = 1.

o If z;, x;, and w are in three different subspaces, the
distances from w to both x; and x; are poorly defined,
and we expect to obtain Y = 0 and Y = 1 with equal
probability.

We operationalize this knowledge by denoting the sub-
space that point x; lives in as o(x;) = m: x; € S, and
defining the measurement model

P(Y (miij) =0 | wai*) =
1

1+e‘”(“iTjw"’iJ‘) » ole) =olz) =¢
_J1—p, o(z;) =1*, o(z;) #* (1)

Py olwi) # 1%, o(x;) ="

0.5, o(xz;) # 1%, o(z;) # %

Here, when x; and x; are in the same subspace as w we use a

2 2
- _ lmill2— e )12
= =% and by; = Loa— o2
=51, Yo 2w,

define the hyperplane bisecting x; and x;, and -y represents a
noise constant describing the reliability of the measurements.
This type of distance-based response probability is a standard
psychometric model used previously in paired comparison
queries [13]. When only one of x; or x; is in the same sub-
space as w, the small constant p represents the probability of
the point not located in the same subspace as w erroneously
being selected as closer to w.

logistic model where a;;

2.2. Algorithm overview

Our proposed PICASSO algorithm proceeds in two phases. In
the first phase, we exploit the difference in response models
to infer the subspace i* that w lives in. With this inferred
subspace i* in hand, the second phase applies the adaptive
Bayesian strategy of [13] to localize w € S.

The first variant of PICASSO collects a fixed number of
queries per subspace, and the second variant starts with the
full set of candidate subspaces Z = {1,..., K} and itera-
tively removes unlikely subspaces as measurements are adap-
tively collected. Our first variant, which we call Distilled
PICASSO because of its resemblance to the distilled com-
pressive sensing strategy of [14], admits a sample complexity
bound that describes the number of queries needed to cor-
rectly identify the subspace ¢* that w lies in. Our second
variant, which we call Bayesian PICASSO, uses an adaptive
Bayesian scheme to select measurements, improving perfor-
mance in practice.

2.3. Variant 1: Distilled PICASSO

Our first subspace identification algorithm (listed in Algo-
rithm 1) poses a scheduled sequence of paired comparisons
between points in different subspaces to estimate ¢*. For
each candidate subspace, a fixed batch of comparisons is con-
structed such that one of the items lies in the subspace while
the other item lies in a different subspace. The following the-
orem bounds the number of comparisons needed to identify
the correct subspace using this strategy.
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Theorem 2.1. With probability at least 1 — §, Distilled PI-
CASSO identifies the correct subspace i* from K possible
subspaces using 'T" paired comparisons per subspace if

20K -1)?2 K

T > In —,

K= s
resulting in O(K log %) total paired comparisons required
for accurate subspace recovery.

Importantly, note that the number of queries to identify
the correct subspace scales only slightly worse than linearly
in the number of subspaces and is independent of the number
of possible query points {x;}. The proof follows from an
application of concentration inequalities and a union bound
using the probability response model defined in (1).

Proof. Without loss of generality, let ¢* = 1. We have that
P(Y(x1,2;)) =0)=1—-pVj>1and P(Y(xzj,xx) =
0) = g for j > 1 where ¢ = 2;&?{ 52 and x;, is randomly
selected as in Algorithm 1. Since each y; is a Bernoulli ran-
dom variable, by Hoeffding’s inequality we have for ¢ > 0,

Vi>1

Piri<l—p—¢g)< e 2T P(rj>qg+e)<e
From the union bound,

P((ri<l—p—g)V(ra>q+e)V(rs>qg+e)...)

<P(ri<l—p—¢e)+Plra>q+e)+Plrs>q+e)...
SK€7252T
K
= P (r1>1—p—6)/\(rj<q+5) >1-Ke
j=2
_ K(%*p) . . e .
Lete = A=) Then with high probability, r; is greater

than r; for all j > 1, meaning that ¢* is recovered accurately.
To guarantee that i* is recovered with probability at least 1—4,

20K L7y K 0

we can set 1" > K1 _p?

2.4. Variant 2: Bayesian PICASSO

Our second subspace identification algorithms (listed in Al-
gorithm 2) starts with the full set of candidate subspaces Z =
{1, ..., K} having the distribution P(; = ¢*) ~ Unif(Z) and
iteratively removes the unlikely ones. To form each paired
comparison, points x; and x; are selected from the remain-

ing candidate subspaces Z such that o(x;) # o(x;). After
collecting the '" paired comparison of the form (1), the pos-
terior over the subspaces can be updated as
P(i=14"|yra—1,Y (x5, @) = y)
P(Y(zj, @) =y |i=i"y14-1) P (i =" | y1:4-1)

Algorithm 1 Distilled PICASSO Algorithm
Require: 7 pairs per subspace

I rli] < 0Vie{l...K}

2. fori=1,... K do

3 fort=1,...,T do

4 Sample x; uniformly from S;

5 Sample j uniformly from {1 < j < K,j # i}
6: Sample 3 uniformly from S;
7
8

Obtain measurement y; ~ P (Y (21, x2) | w,i*)
rli] + rli) + L7

9: end for

10: end for R

11: Return estimate ¢* = arg max; r[i].

Algorithm 2 Bayesian PICASSO Algorithm
cwhile P(i |y14)<1—7,i=1,...,K do
: Sample ¢ uniformly from Z

1

2

3 Sample «; uniformly from .S,

4 Sample j uniformly from Z \ {i}

5: Sample x, from subspace S

6 Obtain measurement y; ~ P (Y (1, x2) | w,i*).
7 Update posterior P(i* | y1.¢) using (2).

8: Update candidate subspaces Z = {i: P(i|y1.1) > 7}.
9: t=t+1.
10: end while

11: Return estimate i* = argmax; P(i | Y1)

3. EXPERIMENTS

_o.27 In this section, we demonstrate the performance of our pro-

posed method using synthetic data with known ground truth.
We proceed in two stages: First, we apply Bayesian PI-
CASSO to determine the correct subspace S;- using paired
comparisons. Second, we exploit this knowledge to localize
w € S;« using the mean-cut, maximum variance (MCMV)
algorithm of [13].

In each synthetic experiment, we randomly generate data
in R? lying in one of the K subspaces. Each subspace is de-
fined by a random covariance matrix of rank r = % and the
data is generated by sampling from a Gaussian distribution
with the defined covariance. We then run Bayesian PICASSO
until convergence for different values of K and p. In our ex-
periments, we set d = 10, 7 = 0.01

Figure 2 shows the performance of the Bayesian PI-
CASSO algorithm as the problem difficulty increases in one
of two ways. In Figure 2(a), we increase the number of can-
didate subspaces K. In Figure 2(b), we increase p, making
it more difficult for the algorithm to determine whether x;
and x; are in the same subspace. We observe that PICASSO

— — . (2  can recover the true subspace accurately but that its perfor-
ze%ﬁl}P(Y(mj’mk) =2 ="y P = ye-) mance degrades as K and p increase. Notably, in Figure
2(a) the number of required comparisons roughly follows the
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(b) Convergence speed and accuracy as p increases

Fig. 2. Performance of Bayesian PICASSO as difficulty in-
creases with increases in the number of subspaces (K) and the
value of the constant (p). “Num Queries” denotes the number
of queries required for the algorithm to converge; accuracy
denotes the rate of success in identifying the correct subspace.

O(K log K) trend described in Theorem 2.1. Figure 3 shows
the accuracy of the second phase of the algorithm, which uses
the MCMYV algorithm of [13] to localize the point within the
subspace identified in the first phase. The point localization
error decreases sharply after just a few steps.

4. APPLICATION TO IMAGE SEARCH

We demonstrate the utility of PICASSO by applying it to the
task of localizing an image in an embedding of the CIFAR-10
dataset [15], which consists of 32x 32 images from 10 classes.
The advantage of our method in this application is that by
using our union of subspaces model with image classes rep-
resenting subspaces, the search procedure is able to exploit
class relationships between images during inference.

To generate an initial item embedding, we implement a
VGG neural network classifier [16] and classify 5,000 images
from the CIFAR test set. We use the classifier to generate
both an estimated subspace label for each data point (repre-
sented by the classifier output), and a feature representation
from an intermediate layer in the neural network, which we
use as item locations and to calculate similarity. Here, we
adapt the oracle model to work with the neural network by
defining the function o(-) in (1) as the classifier output and
defining x; and x; as the feature representations from an in-
termediate layer of a pre-trained VGG network.

Figure 4 shows the subspace identification accuracy aver-
aged over 1000 trials. We observe that Bayesian PICASSO
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Fig. 3. Performance of point localization using MCMYV as the
number of queries increases.
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Fig. 4. Performance of subspace identification using Bayesian
PICASSO on the CIFAR dataset versus number of queries.

accurately estimates the correct subspace S;« as the number
of queries reaches approximately 50.

5. DISCUSSION

In this paper we extended methods for using paired compar-
isons to localize a point in R? to the setting where points in-
stead lie in a union of subspaces. We introduced two algo-
rithms for identifying which subspace an unknown point lies
in given paired comparisons to points in known subspaces:
Distilled PICASSO (which admits sample complexity bounds
showing that the algorithm exploits the union of subspaces
model to require provably fewer measurements than a naive
unstructured model), and Bayesian PICASSO (which uses a
fully Bayesian model and adaptive sampling scheme to iden-
tify the correct subspace with even fewer measurements).
While we have focused on the most challenging aspect
of inference in the union of subspaces model (identifying the
subspace the unknown point lies in), further improvements
may be possible by utilizing the subspace structure in the lo-
calization phase of the algorithm. For example, the adaptive
Bayesian strategy of [13] could be made more efficient in our
framework by projecting points onto the identified subspaces.
Other possible avenues for future work include an extension
to the time-varying setting (e.g., using the Bayesian frame-
work of [17]), extending analytical results to the Bayesian
algorithm, and applying the union of subspaces model to per-
ceptual compression in the latent space of generative models.
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