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ABSTRACT

Audio event detection and classification are critical tasks in
the analysis of multimedia data. Most current research on
this topic focuses on processing strongly labeled data and
using fully supervised machine learning techniques. How-
ever, many sources of multimedia data lack detailed anno-
tation and rather have only high-level meta-data describing
the main content of various long segments of the data. We
propose a novel framework to perform audio classification
when working with such weakly labeled data. A traditional
approach to this problem is to use techniques for strongly la-
beled data and then to deal with the weak nature of the la-
bels via post-processing. In contrast, our approach directly
addresses the weakly labeled aspect of the data by classify-
ing longer windows of data based on the clustering behav-
ior of the acoustic features over time. We evaluate the pro-
posed framework using both synthetic datasets and real data
and demonstrate that our method can significantly outperform
the traditional approach.

Index Terms— Audio classification, weakly labeled data,
supervised learning

1. INTRODUCTION

This paper presents a novel method for audio classification
based on weakly labeled training data. For weakly labeled
data, sections of data are labeled as containing a signal of in-
terest, but this signal may be intermittent and occur at one or
more locations which are not clearly delineated. Weakly la-
beled data is common in many application areas, but is partic-
ularly common in audio classification tasks. For example, one
might have training data consisting of clips of audio labeled
“horns” that contain many other sounds along with some in-
termittent horn blasts. Given such weakly labeled data, our
goal is to be able to classify segments of audio according to
the content they contain, even if this content is only inter-
mittent. Following the example above, we would like to be
able to recognize when an audio segment contains a horn blast
even if it only occupies a small fraction of the segment.
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Part of the motivation for this research is in response to
the deluge of self-recorded multimedia data now available.
Many popular upload sites contain video and audio that lacks
detailed annotation but rather only has high-level meta-data
describing the significant content of the entire signal. Thus,
given clip-level metadata, we only know that the described
objects and events occur in the recording, but we have no in-
formation about how often and exactly when they occur.

More broadly, weakly labeled audio data arises in numer-
ous other applications simply as a result of the difficulty and
expense involved in manually annotating the precise contents
of audio data. In this paper we consider one particular exam-
ple application where this occurs in the context of acoustic
monitoring of large construction sites. The goal in this ap-
plication is to learn to identify the typical sounds of specific
pieces of equipment and, where possible, their actions. Given
weakly labeled training data for different pieces of equip-
ment/actions, we would then like to be able to automatically
monitor and characterize the activity at a construction site
from simple audio recordings. Below, we evaluate our pro-
posed framework in this context on real-world data we have
collected from construction sites [1].

In this paper, we present a structured framework which
combines multiple machine learning techniques as an ap-
proach to deal with these weakly labeled recordings. Our
approach involves classifying longer segments of data by
considering the clustering behavior of the acoustic features
across a window of time to create a foreground / background
model. On both synthetic and real-world data, we show that
our proposed method achieves superior performance com-
pared to a more traditional approach.

2. BACKGROUND

Audio classification has traditionally been studied using
datasets which contain detailed temporal information of each
sound event present [2, 3]. However, as noted above, many
audio datasets are only weakly labeled in that the labels only
indicate that some specific sound events are presented in the
audio, but do not contain the exact time the events occur in
the recording [4, 5]. However, the use of weakly-labeled
audio data has received increased attention recently. Indeed,
it was one of the subjects of the recent DCASE Workshop
and Challenge—see, for example, [6, 7, 8]. In [9] the authors



use a fully connected neural network (FCN) to recognize
instruments and tempo for each time frame of an audio clip
with only the clip-level labels, extending this network to
other sound event detection problems in [10]. In [11] the au-
thors propose a multiple instance learning approach for sound
event detection using weakly labeled data. Convolutional and
recurrent neural networks (CNN and RNN) have also been
used in the related context of audio tagging tasks [3, 12].
These existing works can be understood as first using weakly
labeled data to build strong labels, and then applying standard
machine learning techniques.

3. PROPOSED METHOD

In this paper, we advocate a new approach to training sound
event detectors and classifiers on weakly labeled data based
on jointly analyzing entire segments of weakly labeled data to
create foreground / background models that implicitly learn
the weakly-labeled events. Our proposed method for train-
ing on weakly labeled data comprises a sequence of inter-
related steps. As an initial step, we note that it is typically
helpful (but not required) to perform signal enhancement to
reduce the background noise level. After the enhancement,
the output data is then converted into a time-frequency rep-
resentation using the short-time Fourier transform (STFT).
We then apply a dimensionality reduction technique to pro-
duce a low-dimensional set of features for each column (time
bin/window) of the STFT – here we use a truncated singular-
value decomposition (SVD). We then apply K-means clus-
tering to these feature vectors. From the output of K-means
clustering, we can construct training vectors for segments cor-
responding to different categories by examining the distribu-
tion across the different clusters. A support vector machine
(SVM) is then trained using these training vectors to identify
different sound patterns (e.g., corresponding to the various
sound events of interest such as activities of each machine
in jobsite recordings). Each of these steps are described in
detail below.

3.1. Signal enhancement

We begin by simply noting that if there is a significant amount
of noise, performance can be improved by applying basic
noise suppression as a first step. Of course, the enhance-
ment should be tuned carefully since low-level enhancement
will still keep most of the background noise; while if the en-
hancement is too aggressive, the audio in the dataset might be
distorted, degrading performance. For the construction site
audio, we chose a classic signal enhancement algorithm de-
veloped by [13] because it has been proven to perform well in
highly non-stationary noise environments such as what might
be encountered at a construction jobsite. As shown in Fig-
ure 1, the frequency pattern is more distinct in the denoised
recording than the original recording.

Fig. 1: Comparison between the STFTs of the original record-
ing and denoised recording.

3.2. Feature extraction

The enhanced signal sampled at Fs = 44 100 Hz is then
converted to a magnitude time-frequency representation us-
ing STFT with a 512-point Hanning window, a 1024-point
DFT, and a 50% overlap (256 overlapped samples).

In order to reduce the dimension of the STFT, we next
compute the SVD of the (magnitude) of the STFT matrix X:

X = UΣVT .

By examining the matrix Σ, which contains the singular
values along the diagonal, we can determine how many com-
ponents are sufficient to provide a good approximation to
the original X. We can then truncate the SVD by including
only the first R columns of U and V. We can then treat the
columns of (the truncated) VT as a low-dimensional set of
features for each time bin of the STFT.

3.3. Clustering and forming the training data

We next apply K-means clustering to partition the columns
of VT into K clusters. This can be viewed as a way of char-
acterizing the distribution of the columns of VT , The num-
ber of clusters is selected experimentally, and we found that
six to eight clusters worked well for every case that we ex-
plored. However, we note that more complex signals may
require more clusters. Our intuition is that different acoustic
features in the signal will correspond to distinct clusters. If
this is true, then as shown in Fig. 2, different categories will
have some overlapping clusters—resulting from the common
background elements shared by the different categories—and
will have some non-overlapping clusters, which can be treated
as representatives for each different category.

The K-means clustering results in each time bin being
assigned a cluster label; but, this process is somewhat noisy
and having data belong to a particular cluster is not necessar-
ily a good class indicator. However, in practice what is often
needed is a label associated with a slightly longer time period
such as the duration of the sound or a short audio segment.
For our data, the time period for a specific activity can last



Fig. 2: Illustration depicting clustering behavior. The two
categories share some clusters (corresponding to background
features) but also contain clusters unique to each category.

Fig. 3: Example training vectors for each category formed by
computing an empirical histrogram across the clusters using
a weakly labeled window of data.

for seconds, but each second will have hundreds of time bins.
Thus, to construct training vectors for the full time period, we
calculate empirical histograms which capture the distribution
across the clusters within each time window. The length of
the time window is set to be one second – long enough to
capture a brief impact sound or a sustained sound according
to the activities that we were trying to detect and classify. The
one-second period was decided empirically by experimenting
with several different audio datasets.

3.4. Classification via support vector machines

Following clustering, we then form a set of training data to be
used by standard supervised learning techniques – in this case
a support vector machine (SVM) [14, 15]. The input to the
SVM is the normalized cluster membership histogram over
the time-period of interest (1 second in our case). Two exam-
ple training vectors are shown in Fig. 3. The two training vec-
tors (rows) correspond to different events or categories in the
audio clip and the columns capture the percentage of time bins
that belonged to each cluster over a one-second window. We
can repeat this process for many such windows for both cat-
egories of interest to form training data for each class, which
can then be used to build a simple decision rule for classify-
ing future data using SVMs. We use the radial basis function
(RBF) kernel which was found to yield better performance
than the linear kernel in our tests.

To train the SVM, we use the LIBSVM package in MAT-
LAB [16]. To generate training data, we extract 30 to 40

seconds for each category from the dataset. The parameters
C (trade-off parameter) and γ (bandwidth parameter) are se-
lected by considering a log-scale range from 2−7 to 26. (Note
that we select the parameters independently for each dataset.)
We use 10-fold cross validation to select the appropriate val-
ues of C and γ. After training the SVM models for each ma-
chine, we extract other segments from the audio files (selected
at random) as the testing data.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Experimental Setup

In order to evaluate the performance of the proposed sys-
tem, we applied it to two different datasets. The first one
is a synthetic dataset. The synthetic dataset consisted of au-
dio spectrograms, generated so that each looked as though it
contained multiple segments of sound each containing sound
events from one of two classes interspersed with background
sounds. To generate the synthetic dataset, a random sequence
of states (representing weak labels) was generated and then
for each labeled segment we further generate a random se-
quence of background and sound events consistent with the
label. Each synthetically generated spectrogram column was
generated randomly according to a predetermined distribution
according to its type (background, event 1, and event 2). In
different events, the spectral peaks of predetermined distribu-
tion varied considerably. The spectral peaks of predetermined
distribution also varied in same event but they are generated
in a small range. State 0 corresponded to environmental noise
in the real recordings and so consisted of randomly gener-
ated Gaussian distributions with large standard deviation σ.
For state 1 and state 2, both consisted of randomly generated
Gaussian distributions with similar standard deviation but dif-
ferent mean µ of the distribution so that each state can rep-
resent different categories in real-life datasets. Finally, the
synthetic spectrograms are blurred (convolution kernel [0.5 1
0.5]) to make the transitions between states less distinct and
more realistic.

The second dataset consists of 8 different pieces of con-
struction machines operating at various jobsites selected as
case studies: 1) JD333E Compact Loader, 2) JD50D Com-
pact Backhoe, 3) Ingersoll Rand Compactor, 4) CAT 320E
Excavator, 5) Komatsu PC200 Excavator, 6) JD 700J Dozer,
7) Hitachi 50U Excavator, and 8) Concrete Mixer. Each ma-
chine was carefully monitored and the generated sounds while
performing routine tasks were captured using a commercially
available recorder (Tascam DR-05). Each audio file was man-
ually labeled based on various activities that took place during
the recording time. The label here will be used as correct label
in the experimental results. Heavy construction equipment
usually performs one major task (digging, loading, breaking,
etc.) and one or more minor tasks (maneuvering, swinging,
moving, etc.) in each cycle, so we classified each audio file



Table 1: Experimental Results

Machine SVM Only SVM with Filtering NEW
Major Act Minor Act Major Act Minor Act Major Act Minor Act

Synthetic Data 59.12% 60.39% 64.45% 67.69% 98.12% 99.0%
JD333E 69.12% 75.47% 82.12% 78.24% 80.03% 83.55%
JD50D 70.76% 56.78% 84.28% 59.87% 79.79% 76.74%
IR Compactor 68.45% 5.28% 80.55% 30.01% 82.47% 76.26%
CAT320E 64.67% 36.88% 78.24% 71.02% 80.36% 78.29%
Komatsu PC200 63.17% 57.41% 79.64% 69.81% 81.24% 77.48%
JD700J 69.98% 64.07% 81.33% 72.15% 80.06% 79.91%
Hitachi 50U 65.38% 52.93% 79.71% 54.96% 81.62% 78.88%
Concrete Mixer 62.49% 52.29% 77.82% 60.57% 80.16% 80.08%

based on two activities: major and minor (or activity 1 and ac-
tivity 2). Also, within each activity time period, there will be
some inactive times which only contain environmental noise
in the recording. Thus, we will have audio clips each la-
beled with a specific activity, while these labels do not contain
the information as what time the specific events occur in the
clip. A large portion of the recordings might be environmen-
tal noise, which corresponds to state 0 in our synthetic dataset.
For example, one recording for JD 700J Dozer could be man-
ually labeled as “digging” from 0s to 30s but it might only
dig for 10 seconds in this 30 seconds period. Each labeled
audio file was sent through our audio processing pipeline and
divided into activities 1 and 2. Finally, the performance of the
algorithm for each case study has been compared to manually
labeled files. The comparison results are depicted in Table 1.

The results of the proposed algorithm are compared with
applying an SVM to the spectrogram directly and also to post-
filtered SVM results—that is, choosing the activity based on a
majority vote of the SVM results over the course of 1 second.

4.2. Experimental results

For the synthetic activity, we found that our method worked
perfectly until we made the classes relatively similar, noisy,
and blurred. Even under those circumstances, it performed
far better than the filtered SVM method. It is obvious that
the traditional SVM-based algorithm cannot identify different
categories with weakly-labeled training data, while our new
approach can complete the identification task well.

For the construction site recordings, as a more realistic
dataset, we would generally expect the accuracy of all ap-
proaches to be lower than in the synthetic datasets. Neverthe-
less, our proposed method still performs relatively well and
generally outperformed the filtered SVM methods (often sig-
nificantly, e.g., see the Ingersoll Rand Compactor and CAT
320E Excavator). The overall accuracy of the proposed sys-
tem was around 80% when identifying major activities and
over 75% accuracy identifying minor activities for each ma-
chine. This is better overall than the filtered SVM. However,
it is interesting that the filtered SVM methods performed bet-

ter using the actual recordings than they did with the synthetic
data. We believe that this is an artifact of how the data was
collected. It is likely that the background sounds between
recordings are somewhat correlated to the activity (for exam-
ple, similar activities were recorded near the same time and
place) so that the filtered SVM may be using the background
not as a confuser but to actually help in the classification.

The main performance difference between our proposed
framework and traditional filtered SVM algorithm involves
identifying minor activities in our recordings. As shown in the
table, the filtered SVM algorithm has difficulty when identi-
fying minor activities in construction equipment recordings.
The minor activities, which often contain significant environ-
mental noise, inactive periods for a specific machine, and non-
productive actions such as moving and swinging arms, result
in overlapping clusters in our K-means clustering stage. The
simple SVM approach cannot identify these activities well
since they have a high probability of being confused with
other target activities. This results, in practice, in overfitting
to the background signal in these recordings. In contrast, in
our proposed framework each different category will sepa-
rate out the background into the “overlapping” clusters and
the classification performance is determined more by the non-
overlapping clusters, resulting in improved performance.

5. CONCLUSION

The proposed framework provides an alternative way to iden-
tify different categories given weakly labeled datasets. Our
approach works by considering the clustering behavior of the
acoustic features across a window of time to create a fore-
ground / background model and automatically discount or ig-
nore background or environmental signals. One strength of
our approach is that we do not need a large database com-
pared to existing neural network based methods – although
one could easily imagine incorporating neural network ar-
chitectures into our framework if desired (e.g., replacing the
SVD with a restricted Boltzmann machine or similar autoen-
coder, and/or replacing the SVM with a neural network).
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