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ABSTRACT
Wheelchair users often experience prolonged periods of stationary sitting. Such periods are accompanied 
with increased loading of the ischial tuberosities. This can lead to the development of pressure ulcers 
which can cause complications such as sepsis. Periodic pressure o!oading is recommended to reduce the 
onset of pressure ulcers. Experts recommend the periodic execution of di"erent movements to provide 
the needed pressure o!oading. Wheelchair users, however, might not remember to perform these 
recommended movements in terms of both quality and quantity. A system that can detect such move-
ments could provide valuable feedback to both wheelchair users as well as clinicians. The objective of this 
study was to present and validate the WiSAT – a system for characterizing in-seat activity for wheelchair 
users. WiSAT is designed to detect two kinds of movements – weight shifts and in-seat movements. 
Weight shifts are movements that o!oad pressure on ischial tuberosities by 30% as compared to upright 
sitting and are maintained for 15 seconds. In-seat movements are shorter transient movements that 
involve either a change in the center of pressure on the sitting buttocks or a transient reduction in total 
load by 30%. This study validates the use of WiSAT in manual wheelchairs. WiSAT has a sensor mat which 
was inserted beneath a wheelchair cushion. Readings from these sensors were used by WiSAT algorithms 
to predict weight shifts and in-seat movements. These weight shifts and in-seat movements were 
validated against a high-resolution interface pressure mat in a dataset that resembles real-world usage. 
The proposed system achieved weight shift precision and recall scores of 81% and 80%, respectively, while 
in-seat movement scores were predicted with a mean absolute error of 22%. Results showed that WiSAT 
provides su#cient accuracy in characterizing in-seat activity in terms of weight shifts and in-seat 
movement.
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Introduction

Wheelchair users, especially users with spinal cord injuries, 
experience limited sensory cues to move within their chairs. 
This leads to extended periods of stationary sitting (Sonenblum 
et al., 2016) which causes extensive loading of body tissues, 
particularly around the ischial tuberosities and sacrum and 
coccyx. Increased loading of tissues, both in magnitude and 
duration, can hinder blood and oxygen supply to tissues which 
can cause pressure ulcers. About 46% of 300,000 people with 
spinal cord injuries in the United States experience pressure 
ulcers (N.S.C.I.S.C, 2015). After sustaining spinal cord injuries, 
more than 20% require costly surgeries to manage these ulcers 
(Saunders et al., 2012). The recurrence rate for pressure ulcers 
can be up to 79% which further adds to healthcare costs (Bates- 
Jensen et al., 2009). These pressure ulcers can become infected, 
leading to life-threatening complications such as sepsis – such 
complications are associated with mortality rates of 48%.(N.S. 
C.I.S.C, 2015).

Periodic movements reduce the duration of pressure 
applied to these tissues. Clinical experts often suggest the 
periodic usage of certain recommended pressure relief move-
ments, called weight shifts (Consortium for Spinal Cord 
Medicine Clinical Practice, 2001; Sliwinski & Druin, 2009). It 
has been shown that such weight shifts lead to an increase in 

tissue blood flow, which may help prevent the development of 
pressure ulcers (Sonenblum et al., 2014). However, most 
wheelchair users fail to perform these movements with suffi-
cient frequency. On a given day, the average wheelchair user 
spends 140 continuous minutes seated in their wheelchairs 
without performing any weight shifts (Sonenblum et al., 
2016). This is a significantly lower number compared to the 
recommendations made by physicians, which vary between 
performing weight shifts every 15 minutes to performing 
weight shifts every 30 min (Consortium for Spinal Cord 
Medicine, 2014; Consortium for Spinal Cord Medicine 
Clinical Practice, 2001; Mayo Clinic, 2009; Sliwinski & Druin, 
2009). Additionally, the users’ execution of these movements 
might not always lead to the recommended amount of off-
loading to constitute an effective weight shift.

A system that provides feedback to the users in terms of the 
number of successful weight shifts performed could potentially 
help improve the quality and quantity of weight shift movements 
performed. The earliest of such systems used wheelchairs 
equipped with pressure sensors that could only detect pushups 
(Fordyce & Simons, 1968). Subsequent systems were able to detect 
forward and lateral leans by comparing readings from multiple 
pressure sensors to a threshold (Roemer et al., 1976; Yang et al., 
2009). Other publications describe systems which used pressure 
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sensors on top of the seating cushion, which is not a suitable 
configuration for long-term usage. Recent publications use differ-
ent machine learning classifiers to identify specific postures such 
as leaning forwards, sideways, and so forth for wheelchair occu-
pants (Ma et al., 2017). These studies provide limited details for 
postures to be detected. Only a single posture for each lean type 
was used for training. These postures likely correspond only to full 
leans which are performed rarely by wheelchair users as compared 
to partial leans. Other systems identify pressure relief movements 
for tilt-space chairs, but these systems do not extend to upright 
wheelchairs. A comprehensive survey of such systems can be 
found in (Vos-Draper & Morrow, 2016)

One study used a pressure relief identification system to find 
the relationship between trunk strength and pressure offload-
ing (Gabison et al., 2017). However, pressure reliefs were 
considered as instances when readings from one of the pres-
sure sensors dropped to zero. Another paper addresses 
a similar question of absolute pressure-offloading in which 
a sufficient movement was deemed to have been performed if 
the pressure was reduced below 30 mmHg, as measured using 
a sophisticated high-resolution pressure sensing mat (Dowling 
et al., 2017). Note that this level of pressure reduction is nearly 
equivalent to completely exiting the seat, which can be detected 
without resorting to sophisticated machine learning tools. 
Previous studies have shown that users do not perform such 
movements frequently (Sonenblum et al., 2016).

Recent studies (Sonenblum et al., 2014) have shown that 
movements that relieve pressure by 30% relative to upright 
seating pressure can be sufficient to provide biomechanical 
benefits such as increased blood flow. Such movements, 
referred to as partial leans, are performed more frequently 
than the extreme leans of (Dowling et al., 2017; Sonenblum 
et al., 2016). These partial leans provide sufficient pressure 
offloading to constitute weight shifts. Weight shifts are move-
ments, including partial and full leans, that relieve pressure at 
the ischial tuberosities by 30% or more as compared to pressure 
during upright sitting and provide an increase in blood flow to 
the ischial tuberosity (Sonenblum et al., 2016).

Several recent studies have explored the use of a novel 
system to quantify the number of weight shifts performed by 
users in their daily lives and identify differences in behavior 
between those with and without a history of pressure ulcers 
(Dai et al., 2012; Sonenblum & Sprigle, 2018; Sonenblum et al., 
2016; Sprigle et al., 2019). Unfortunately, this system was 
individually trained by collecting novel training and simulta-
neous ground truth data for each user and then using a K 
nearest neighbor classifier that uses these individualized train-
ing data. This is likely to be infeasible in the context of a more 
widely usable system and/or commercial product, which would 
need to achieve good performance with minimal to no perso-
nalized training and truth data.

In-seat movements are transient movements that cause the 
center of pressure on the buttocks to travel 5 cm over a 5 second 
window. These movements provide temporary offloading of 
the buttocks. Such movements are more common than weight 
shifts and have also been shown to increase blood flow 
(Sonenblum & Sprigle, 2018). Detecting such in-seat move-
ments could further help characterize movements that help 
prevent the development of pressure ulcers.

In this study, we discuss the validation results of the 
Wheelchair In-Seat Activity Tracker (WiSAT), which is 
intended to be a prototype for in-seat activity characterization. 
This tracker detects weight shifts and in-seat movements. This 
tracker can be used with the most commercially available skin 
protection wheelchair cushions. This paper aims to validate the 
performance of the WiSAT on data that closely depicts data 
encountered in a real-world setting. By validation, we mean 
validating the performance of our proposed tracker to detect 
these movements. WiSAT performance was validated among 
manual wheelchair users. This tracker is intended for both 
manual wheelchairs and powered wheelchairs that lack power 
seat functionality – such as tilt, recline, etc.

Methodology

Instrumentation

The WiSAT consists of three major components: a sensor mat, 
data logger, and mobile app. The sensor mat consists of six 
force-sensitive resistors produced by Tekscan (Boston, MA), 
which is placed on the wheelchair beneath the wheelchair 
cushion (Figure 1). This mat is fully inserted within the cush-
ion cover such that the mat is beneath the cushion but above 
the cushion cover’s bottom surface. Once the cushion cover is 
zipped, the mat is secured in its position. The readings from the 
sensors are recorded by a data logger at a frequency of 4 Hz and 
are synchronized in time. The current data logger weighs 10 g, 
measures 5 cm in width and 7 cm in length. This data logger 
may be secured inside the cushion cover or in a bag attached 
outside of the cushion cover. This data logger is equipped with 
a Bluetooth module to transfer data to a mobile application. 

Figure 1. WiSAT sensor mat which is placed beneath a wheelchair cushion. The 
top of the picture corresponds to the mat section that lies at the front of the 
cushion while the bottom of the picture corresponds to the mat section that lies 
at the back of the cushion.
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This application first calibrates the raw sensor values into force 
values. These values are then used to characterize weight shifts 
and in-seat movement. For validation, however, raw data 
stored on the data logger were downloaded to a computer via 
USB and processed using MATLAB.

Dataset

The data collection protocol was reviewed by the institutional 
review board and all participants provided informed consent 
before participation. Participants were recruited throughout 
2019 via posters, e-mails, and social media posts. The partici-
pant inclusion criteria required participants to be aged 18 to 69, 
be able to transfer on and off their chair independently, and be 
able to perform independent weight shifts. The participants 
were also required to communicate effectively in English to 
follow the data collection protocol. Datasets for training and 
validating the WiSAT were collected in a controlled laboratory 
setting. The training dataset was collected through an 8-min 
protocol, while a validation dataset was collected through a 70- 
min protocol.

The training dataset collection protocol involved move-
ments such as push-ups, directional leans (in right, left, and 
forward directions), diagonal leans (in the forward-right and 
forward-left directions) along with intermittent periods of 
upright sitting separating many of the leans. Each of the direc-
tional leans was further categorized into two kinds of leans: 
partial leans and full leans (Sonenblum et al., 2014). For full 
leans, the participants were asked to lean in the respective 
directions until they were able to touch the ground or as far 
as they could lean comfortably. Partial side (right and left) 
leans involved leaning until the participants were able to 
touch the center of the manual wheelchair wheel. Forward 
partial leans involved leaning forward and placing the elbows 
on the knees. Each of the directional leans mentioned before, 
including full/partial and diagonal leans, was maintained for 
20 seconds, to provide a sufficient number of data points at 
each position. Pushups were maintained for 3 seconds while 
upright sitting segments lasted for 20 seconds.

The training dataset was collected using 20 participants, of 
whom 12 used a wheelchair as their primary mobility device, 
and 8 were able-bodied. Data from both wheelchair and able- 
bodied participants were processed identically. While wheel-
chair users may move differently than able-bodied individuals, 
force distribution through the cushion onto the sensor is 
a function of gravity and the material construction of the 
cushion, therefore, it is independent of the functional level of 
the participant. This was reflected in the training data where 
the classifier features and classifier performance showed no 
distinction between wheelchair users and able-bodied indivi-
duals. Wheelchair users performed the protocol using their 
own wheelchair and cushion, and if time allowed, they repeated 
the protocol using additional wheelchair cushions provided by 
the investigators. Able-bodied participants performed the pro-
tocol 3 times, seated on three different wheelchair cushions: 
Jay2 by Sunrise Medical (Fresno, CA), Roho High Profile by 
Permobil (Permobil, Bellevillle, IL), and Matrx Vi by Invacare 
(Elyria, OH). These cushions were selected because they are 
some of the most commonly prescribed cushions for full-time 

wheelchair users at risk of pressure ulcer development, and 
their material construction and load redistribution to the bot-
tom surface of the cushion are very different. For example, the 
Jay2 uses a firm contoured foam with a fairly rigid base and 
a fluid-filled pad on top; the Roho High Profile uses air-filled 
neoprene bladders to simulate floatation; while Matrx Vi uses 
multiple layers of contoured foam and is more flexible than the 
Jay2. The rigid base of the Jay2 distributes load onto the 
WiSAT quite differently than the very deformable base of the 
Roho High Profile. Wheelchair users used their personal man-
ual wheelchairs, while able-bodied participants used one of 
three wheelchairs for the study: Invacare A-4, Action A-4, or 
Quickie GTX.

A 70-min protocol was used to obtain the validation dataset. 
Twenty unique datasets were collected from 11 participants. 
Three of these participants also participated in the training 
protocol, but the remaining eight were new. This protocol 
involved the same directional leans and pushups that were 
contained in the 8-min training protocol but contained multi-
ple repetitions of these movements. Each of these leans again 
lasted 20 seconds while pushups also lasted 3 seconds. All of 
these movements were repeated four times. Additionally, the 
upright sitting segments that separated the leans were 300 sec-
onds in duration (as compared to 20 seconds in the training 
data protocol) to reflect real-life wheelchair usage where occu-
pants do not perform in-seat movements nearly as frequently. 
This protocol also contained additional movements to better 
represent daily life. These included leaning forward on a desk 
(to represent working or resting) for 30 seconds, as well as 
30 minutes of free activity where participants could move 
about or remain stationary in the chair as they pleased.

A BodiTrak high-resolution interface pressure mat or IPM 
(VistaMedical, Winnipeg, Canada) was placed above the cush-
ion at the interface between the participant and the cushion. 
This mat was used to provide ground truth to identify weight 
shifts and in-seat movements for both training and validation 
datasets. An area of size 3.4 by 3.4 inches corresponding to each 
ischial tuberosity was observed during the course of the proto-
col on this high-resolution mat. The Peak Pressure Index (PPI) 
was calculated for this area (Sprigle et al., 2003). This PPI was 
then used to obtain labels to validate the performance of 
detecting weight shifts. Details on obtaining these ground 
truth labels for weight shifts can be found in Section 3.3.1. 
Labels for evaluating in-seat movement detection performance 
were also obtained using the high-resolution mat. This was 
done by calculating the in-seat movement on the high- 
resolution mat and comparing it to the in-seat movement 
detected by WiSAT. Details for this can be found in 
Section 3.4.2.

Activity metrics

The WiSAT is used to provide two key metrics that character-
ize in-seat activity, summarized as follows.

Weight shifts
Weight shifts are used to identify instances when the pressure 
from either of the two ischial tuberosities (ITs) is offloaded by 
more than 30% for at least 15 seconds. Though the 
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recommended duration of a pressure relief movement varies 
between 15 and 60 s (Walker, 2009), a 15 second duration was 
chosen to include most intentional and unintentional weight 
shifting behaviors. Unlike other works which use absolute 
pressure measured for labels (Dowling et al., 2017), the 
WiSAT defines a weight shift uniquely for each individual 
based on a reduction in pressure relative to upright sitting. 
To accomplish this, the data from the IPM are run through an 
averaging filter to provide a baseline estimate of upright sitting 
pressures. If the PPI values under either ischial tuberosity as 
measured by the high-resolution IPM are reduced by more 
than 30% as compared to the IPM baseline, and this reduction 
is maintained for at least 15 seconds, a successful weight shift 
has been performed. The minimum requirement of a 30% 
reduction was based on previous work, which showed that 
functional leans reduced pressure between 29% and 46% and 
increased blood flow on the order of 100–300% (Sonenblum 
et al., 2016, 2014).

Since the training data are composed of a short segment of 
data with frequent movements, there is not enough time for the 
baselines to stabilize. For this reason, the upright segments are 
used as baselines for training data.

The validation data consist of longer upright segments 
which allow enough time for averaging baselines to stabilize, 
and therefore in the validation data these averaging-based 
estimates are used as the baseline, as would occur in the field.

Weight shift detection requires participants to perform an 
initialization routine at the start of the use of the WiSAT. 
During initialization, participants sit upright and perform 
one full lean toward each direction: front, right, and left. 
Participants were asked to lean as far as they are comfortable 
leaning. The entire initialization takes less than 2 min. The 
sensor values measured by the WiSAT were used to calculate 
the center of pressure in the medial-lateral (CoP ML) and 
anterior-posterior (CoP AP) directions, which were then nor-
malized using the user’s initialization data. These center of 
pressure values were calculated using a weighted sum of force 
values in the medial-lateral (sideways) and anterior-posterior 
(front-backwards) directions as shown in Equations (1) and 
(2). These weights correspond to sensor distances in the 
respective directions. In Equation (1), Fx is the force measured 
by sensor x, while MLX is the distance of sensor x in the medial- 
lateral direction. CoP AP is measured similarly in Equation (2) 
with APx is the distance of sensor x in the anterior-posterior 
direction: 

CoPML à
F1:ML1 á F2:ML2 á F3:ML3 á F4:ML4 á F5:ML5 á F6:ML6

F1 á F2 á F3 á F4 á F5 á F6

(1) 

CoPAP à
F1:AP1 á F2:AP2 á F3:AP3 á F4:AP4 á F5:AP5 á F6:AP6

F1 á F2 á F3 á F4 á F5 á F6

(2) 

Forces from all six sensors are added together to compute the 
total sensor force. This total sensor force is passed through an 
averaging filter to obtain a baseline for the total force during 
upright sitting. The total sensor force is divided by this baseline 
to obtain the normalized total load. CoP ML and CoP AP are 
also passed through an averaging filter to obtain baselines for 

CoP ML and CoP AP. The respective baselines are then sub-
tracted from each CoP to obtain CoP ML and CoP AP that are 
centered at zero. This normalized total load is used along with 
centered CoP AP and centered CoP ML as features to develop 
the weight shift classifiers described below.

Building on previous classification efforts (Dai et al., 2012), 
a weight shift detector was built that requires only limited 
individualization. The training data described earlier were 
used to train three support vector machine (SVM) classifiers, 
with each a classifier corresponding to a different category of 
the cushion. These three categories are air-cell cushions, rigid- 
bottomed cushions, and soft-bottomed cushions. Users of the 
WiSAT are only asked if they are using an air-cell cushion or 
not. If an air-cell cushion is not used, sensor variance during 
upright sitting is used to automatically determine if a rigid 
bottomed or a soft bottomed cushion is used. Once the cushion 
type is determined, the corresponding SVM classifier is used 
for detecting weight shifts. It is important to note that only the 
normalization is individualized. Unlike prior efforts (Dai et al., 
2012), which train a different nearest-neighbor classifier for 
each user, we obtain a single set of classifiers that can be used 
for any user and that is computationally simple to apply.

Examples of detected weight shifts can be seen in Figure 2. 
In Figure 2, the first subplot shows force values from each of 
the six sensors. These force values are converted into CoP AP, 
CoP ML, and total load values. The third subplot shows that 
two weight shifts are correctly detected as these detected seg-
ments correspond to instances where the PPI values for either 
of the two ischial tuberosities decrease by 30% as seen in the 
fourth subplot. The first weight shift is caused by a diagonal 
forward-left lean and the second weight shift is a result of 
a diagonal forward-right lean during the free movement seg-
ment within the validation protocol. The first subplot can be 
used to infer these movements. For each of these two weight 
shifts, it can be seen in the first subplot that force values for 
both back sensors decrease while force values for both front 
sensors increase. This is reflected in the increase of the CoP AP 
values in the second subplot which indicates that a person has 
leaned forward. It can be also seen that for the first weight shift, 
the force value for the middle right sensor decreases while the 
force value for the middle left sensor increases. This corre-
sponds to a change in CoP ML in the negative direction, which 
indicates a person has leaned left. During the second weight 
shift, it can be seen that the force measured by the middle left 
value slightly decreases while the force value increases for the 
middle right sensor. This can be seen in the second subplot 
where the CoP ML value changes in the positive direction 
which translates to a rightward shift.

In-seat movement
The in-seat movement metric is intended to measure transient 
movements that displace the center of pressure or transiently 
unload the buttocks. For example, this might include activities 
such as fidgeting or micro-movements . The distance traveled 
by the center of pressure, which reflects how much the center of 
pressure changes, was measured using the WiSAT in the med-
ial-lateral and anterior-posterior directions. If the resolved dis-
tance over a 5-s window was greater than 5 cm, a successful in- 
seat movement was performed. A successful in-seat movement 
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is also performed when the normalized total load is reduced by 
30%. Such movements transiently unload the buttocks.

Figure 3 shows examples of in-seat movements. The first 
subplot shows center of pressure values for both the medial- 
lateral (CoP ML) and anterior-posterior (CoP AP) directions. 
These CoP values depict the center of pressure location mea-
sured on the sensor mat in centimeters. As a user moves in the 
chair, the center of pressure changes. As medial-lateral and 
anterior-posterior directions are perpendicular, the hypote-
nuse of CoP ML and CoP AP is taken to obtain a combined 
distance traveled by CoP. The combined distance traveled by 
CoP over a 5 second window is then computed which can be 
seen in the second subplot. Whenever this distance traveled 
exceeds 5 cm, an in-seat movement is detected. The distance 
traveled by CoP when out of the chair is ignored as the 
corresponding CoP location values can behave erratically. 
The third subplot shows the total load. An in-seat movement 
is also detected when the total load transitions from its normal 
value of 1.0 to a reduced offloading of 30% which corresponds 
to a value of 0.7. The fourth subplot shows that a total of two 
in-seat movements was detected. The first detected in-seat 
movement originates from CoP distance (subplot 2), while 
the second in-seat movement is caused by total load reduction 
(subplot 3).

Evaluation criteria

Weight shifts
A standard way of evaluating the performance of our proposed 
weight shift classifier would be to compute sensitivity and 
specificity metrics (Trevethan, 2017). Sensitivity is the ratio of 
detected positives overall positives while specificity is the ratio 
of detected negatives overall negatives. These metrics are useful 
when applied to segments that correspond to user leans within 
the data collection protocol, where the protocol request users 
to undertake a series of leans, some of which correspond to true 
weight shifts, and others that do not. However, this approach 
would be an unsuitable representation of the performance on 
the full 90-min data as weight shifts might be performed within 
the free movement regions of the protocol which do not 
request the user to undertake leans. If the predictions and 
truth labels are evaluated at every set of samples from the 
sensors, the resulting scores would always be skewed in the 
direction of specificity over sensitivity, as very few of these 
samples actually correspond to a weight shift. For these rea-
sons, we instead use precision and recall as our key metrics, 
which are known to be more appropriate in such settings (Saito 
& Rehmsmeier, 2015). Precision represents the fraction of all 
detected weight shifts that correspond to true weight shifts. 
Recall represents the fraction of all true weight shifts that are 

Figure 2. Description of weight shift detection. The first subplot shows force values from all six sensors. These force values are converted into features (CoP ML, CoP AP, 
and Total Load) which are provided to the weight shift classifier. The output for the weight shift classifier can be seen in the third subplot along with truth labels. The 
truth labels are obtained from peak pressure index (PPI) values for each ischial tuberosity. When PPI for either of the right or left ischial tuberosities decreases 30%, 
a weight shift label is identified.
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detected as weight shifts. (Note that times during which no 
weight shift is performed, and no weight shift is detected do 
not contribute to the calculation of these metrics, and so long 
periods of inactivity in the validation data do not affect the 
results.) These metrics are described in detail in Figure 4.

In-seat movement
The in-seat movement score was also calculated using the high- 
resolution IPM (truth data). This was done in a manner that 
was identical to the method described in section 3.3.2 for the 
WiSAT. Segments were identified as active when the distance 
traveled by the center of pressure for the high-resolution IPM 
over a 5-s window was greater than 5 cm. Segments were also 
active when the total pressure on the high-resolution IPM was 
reduced by 30%. These segments were then counted to produce 
the IPM in-seat movement score (truth). The WiSAT in-seat 
movement score and the IPM in-seat movement score were 
then compared in the error metric given by: 

In� Seat Movement Error à WiSATscore � IPMscore
IPMscore

(3) 

Results

Weight shifts

Across the 20 datasets within the validation data, the weight 
shift detector had a precision score of 81% and a recall score of 
80% on the validation dataset. Figure 5 shows a scatter plot 
representing precision and recall scores for the weight shift 
classifier. Scores within this plot have been assigned different 
shapes for different cushions. It can be seen that the Roho 
cushion has performed worst. This is discussed in more detail 
in the discussion section.

We also evaluated the performance of another classifier 
trained using a deep neural network architecture: the so- 
called long short-term memory (LSTM) recurrent neural net-
work. The results on the validation dataset for this classifier 
were comparable to that of our SVM approach. However, the 
features used by an SVM are more interpretable as compared 
to an LSTM which is constructed using learned (nearly impos-
sible to interpret) features. Additionally, the SVM approach 
results in a simple polynomial equation that can be compared 
to a threshold to detect a weight shift. This involves relatively 

Figure 3. Example of in-seat movement detection. The first subplot shows the CoP ML and CoP AP location as measured on the sensor mat. These CoP values are then 
used to calculate the distance traveled by CoP over a 5 second window as shown in the second subplot. Whenever this distance is greater than 5 cm, in-seat movement 
is detected. The grayed values in the second subplot show CoP distance traveled when the user is out of chair. When the user is out of chair, CoP location values behave 
erratically, and the corresponding CoP distance is ignored when calculating in-seat activity. The third subplot shows normalized total load. Whenever, the normalized 
total load transitions to be below 0.7, an in-seat movement is also detected.
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simple computations that are more feasible in the context of 
a mobile phone application.

In-seat movement

The movement score was measured on 17 datasets out of 20. 
Scores on the remaining three datasets were dropped as the 
specific sensor mat used to collect these datasets was deter-
mined to be much less sensitive than the mats used to the other 
17 datasets. Specifically, movements that caused transient off-
loading on the high-pressure interface mat caused no change in 

the center of pressure as measured by the sensors. For the 
remaining 17 datasets, the average absolute error for the in- 
seat movement was 22.15%. A histogram representing the in- 
seat movement errors can be seen in Figure 6.

Discussion

Weight shifts

The classifier attained a precision score of 81% and a recall 
score of 80%. These numbers are particularly good for 

Figure 4. Evaluation metrics for weight shift classification.

Figure 5. Precision vs Recall scores for the validation dataset. The plot shows results for 20 datasets collected from 11 subjects. The markers with numbers imply that 
there are multiple markers with identical values overlaid on one another. For overlaid markers on the extreme right, a Roho marker overlays a Matrix marker while two 
Jay2 markers are overlaid at a precision and recall of 0.78 and 0.85, respectively.
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a consumer device that requires no individualized training and 
works with multiple cushion types. Unlike other pressure relief 
technologies, this classifier was designed to detect a 30% reduc-
tion in pressure or partial leans, in the presence of a damper 
(cushion) between the sensors and the human body. Partial 
leans are important to detect because they are more frequently 
performed and provide biomechanical benefit (Sonenblum & 
Sprigle, 2018; Sonenblum et al., 2016, 2014). Given this chal-
lenging task, precision and recall scores greater than 80% are 
respectable.

Errors were most frequently caused by partial leans. Partial 
leans cause offloadings that are often at the boundary of the 
required 30% offloading threshold to count as a weight shift. For 
example, users may offload 32% of the PPI, but this may not be 
detected as a weight shift by the WiSAT, creating a false negative. 
Included in Figure 5 was a dataset with a low recall score of 0.5, 
indicating many false-negative weight shifts. These false nega-
tives contributing to this score were caused by partial leans. An 
example of such false negatives can be seen in Figure 7. The 
intervals marked by green lines show partial leans. The classifier 
is incorrect on the first partial lean but correctly classifies 
the second partial lean. These partial leans correspond to the 
same ischial tuberosity offloading of about 50% but correspond 
to the different magnitude of the center of pressure displacement 
in the medial-lateral direction, which causes the errors. For the 
aforementioned dataset in Figure 5, false negatives were also 
caused when the duration of a weight shift was longer than 
15 seconds, but since the wheelchair cushion damped some of 
the response, the weight shifts measured by the WiSAT were 
slightly below the required threshold of 15 s and were not labeled 

as weight shifts. This damping behavior is most common in air- 
cell cushions with connected bladders, where the air redistri-
butes in response to movement. The alternative scenario (i.e., 
false positives due to partial leans) occurs when a user offloads 
just below the boundary of the threshold (for example, 28%) of 
the PPI during a partial lean, but the WiSAT recognizes this as 
a weight shift, creating a false positive. Figure 8 provides an 
example of such a case. The second false-positive weight shift 
contains significant periods where the true pressure offloading is 
just slightly below the required offloading of 30%. While initi-
alization is used to adjust for consistency across participants, it is 
an imperfect approach; the amounts by which a person leans to 
obtain these scaling values may vary.

The overall performance was particularly downgraded by 
datasets that had low precision scores, which are caused by 
a high false-positive score. In addition to partial leans occur-
ring just below the boundary, additional false-positive seg-
ments correspond to transient pressure offloadings that were 
not maintained for the 15 seconds required to count as a weight 
shift. Such a case can be seen in Figure 8. In the last subplot, the 
offloading drops below the required threshold for brief transi-
ents. The feature values within these segments are similar, 
making the classifier classify the entire segment as a weight 
shift. Such segments are common amongst the datasets that 
have a precision score lower than 70% in Figure 5 and are more 
common on air-cell or soft bottomed cushions such as Roho. 
Both sources of false positives, weight shifts that did not quite 
reach 30% offloading as measured by the IPM, and those which 
offloaded significantly but transiently, still indicated 
a movement by the user that was intended to offload the 

Figure 6. Histogram for in-seat movement error.
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buttocks. While we would not detect such movements as 
weight shifts, occasionally detecting these intentional move-
ments is still preferable compared to detecting stationary sit-
ting as a weight shift, which was not seen in the validation 
testing.

In-seat movement

As seen in Figure 6, the errors for in-seat movement are skewed 
in the negative direction. This is because the cushion acts as 
a damper causing a smaller change in the center of pressure for 
the sensors as compared to the high-resolution mat on top of the 
cushion. The main additional source of error tends to come from 
variability in the sensitivity of the mat sensors, with more sensi-
tive sensors resulting in increased in-seat movement counts and 
less sensitive sensors resulting in lower counts. This variability is 
a function of the force-sensitive resistors rather than the cush-
ions or individual participants. In the future, improvements to 
the data logger circuitry to optimize the gain for each individual 
sensor should equalize the sensitivity and reduce the variability 
experienced in the in-seat movement measurements.

Validation results

The validation results show that WiSAT is suitable for detect-
ing weight shifts and in-seat movement. These two metrics 
correspond to in-seat activity, particularly partial leans and in- 
seat movement, which are more frequently performed by 
wheelchair users in everyday lives than the frequently pre-
scribed full lifts and leans. This provides more meaningful in- 
seat activity characterization when compared to other systems 
(Dowling et al., 2017; Gabison et al., 2017) which detect large, 
relatively infrequent, pressure offloadings.

Potential improvements

While increased accuracy would be possible with a more com-
plex setup and initialization, simplicity was selected instead for 
a robust commercial application. Some future improvements 
to the system are possible. The in-seat movement score may be 
improved by developing a more consistent sensor or improved 
circuitry or by utilizing initialization to normalize according to 
sensor sensitivity. Weight shifts provide a binary output for 
sufficient offloading. This is necessary for end-users who want 

Figure 7. Weight shift classification error on partial side leans. It can be seen in top subplot that the first partial lean has a lower CoP ML feature magnitude than 
the second partial lean, causing only the second partial lean to be detected. However, in the bottom subplot, the pressure offloading is almost identical causing both 
leans to be labeled as true weight shifts. Equivalent offloadings can cause different feature values leading to classification errors.
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a metric that is easy to understand. However, for research 
applications, a regression-based output could be potentially 
more informative for characterizing pressure offloading.

Validation work presented here was completed on manual 
wheelchairs because it was designed to measure independent 
weight shifts. However, additional work has since been com-
pleted to extend the approach to include power wheelchairs 
with and without tilt-in-space. Detecting occupancy and 
weight shifts on complex seating systems with multiple power 
functions, such as tilt, recline, and elevating leg rests may be 
more challenging using the WiSAT and has not yet been 
evaluated.

Conclusions

This paper characterizes the performance of a wheelchair in- 
seat activity tracker (WiSAT). Results were presented on 
a validation dataset that closely resembles real-world usage. 
The tracker measures two metrics: weight shifts and in-seat 
movement. Validation testing suggests that the WiSAT perfor-
mance is sufficiently accurate to inform a user about their in- 
seat activity.

This in-seat activity corresponds to movements that are 
frequently performed by wheelchair users in their everyday 
lives. WiSAT provides a more meaningful in-seat movement 

characterization when compared to other systems (Dowling 
et al., 2017; Gabison et al., 2017) which can only detect large 
pressure offloadings that are infrequently performed.

While the efficacy of the WiSAT to motivate users to meet 
self-selected in-seat activity goals and change behavior still 
needs to be evaluated, the validation presented in this manu-
script was a necessary first step.
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