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I. THE NETWORK LEARNING PROBLEM

Many of the most challenging problems in modern signal process-
ing and machine learning involve the study of complex networks.
Networks arise in a wide variety of applications, ranging from the
analysis of traditional communication networks and social networks
to problems in genomics and fMRI. In all of these settings, one of the
most fundamental questions involves how to discover the relation-
ships between different nodes in a network. In some applications,
this information is (seemingly) readily available. For example, in
many social networks, the relationships for a particular user can be
immediately identified by looking at the user’s “friends.” However,
in many cases the links are far less clear. How can we learn this
information when it is not readily available to us? Moreover, even if
we have some estimate of the network, how can we determine which
relationships are superficial and which ones are truly meaningful?

In many of the applications mentioned above, it can be difficult to
directly observe the types of interactions between nodes that would
lead to the most direct approach for estimating the network structure.
For example, this might be because of technical constraints or privacy
concerns in the context of a communication or social network, or
because of limited measurement ability in many biological appli-
cations. However, in these applications it may still be possible to
observe the activity of a particular node, even when the interaction is
ambiguous. For example, we may be able to observe a particular user
transmitting in a communication network without necessarily being
able to determine with whom they are communicating. In this and
many other applications, the only information that we can observe
regarding the network structure is the timing of events at various
nodes in the network. We aim to quantify when it is possible to
accurately recover the structure of a network from this kind of simple
information about the co-occurrence of events. We will see that,
under natural assumptions on the network structure and the number
of observations, reliable recovery is indeed possible.

II. HAWKES PROCESSES

Our approach to addressing this problem builds on a probabilistic
model for the timing of events. Event times are modeled using a rel-
atively simple point process, the Hawkes process, which differs from
a Poisson process in that the rate is a function of the process history
[1, 2]. This dependence allows it to to capture the action/reaction
behavior prevalent in such networks [3–7]. The rate function for node
i of N in a multidimensional Hawkes process is given by
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where µi is a base rate, Aij controls how node i reacts to events at
node j, t(j)` is the time of the `th of K(j) events at node j, and γ(t)
is a causal, nonnegative, integrable function that dictates the temporal
structure of reactions to events.

An observation of a Hawkes process over the interval [0, T ] has a
negative log-likelihood given by
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which can be optimized over µ and A to obtain a maximum-
likelihood estimate of the parameters. The matrix A (sometimes
called the infectivity matrix) can be interpreted as the adjacency
matrix of our network, where the magnitude of each entry is propor-
tional to the strength of the corresponding relationships. In practice,
we often expect A to be highly structured. For example, in many
networks we expect the number of relationships to be relatively small,
in which case the matrix A would be sparse. In so-called “small-
world networks” A might consist of the combination of sparse and
low-rank components [4]. Such structure can be imposed via simple
penalized maximum-likelihood estimation procedures.

III. RELIABLE RECOVERY

A key question regarding our approach concerns how many obser-
vations are necessary for reliable recovery of the network structure.
Here we will consider the case where the network (andA) is r-sparse
(i.e., A has only r nonzeros). To infer a relationship, we expect that
we would need to observe it in action. Assuming that interactions
are initiated independently between related nodes, by analogy to the
well-known coupon collector problem we expect to need at least
O(r log r) events to ensure that all relationships are expressed so
that they may be inferred.

To verify this, we provide some simulations relating network
recovery to the number of relationships and observed events. We
set nonzero values of A to be (suitably scaled) Bernoulli random
variables. We examine the error rate in terms of the support recovery
of A as a function of the number of events we observe compared to
the number of relationships in the network.
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Fig. 1. Support recovery rates as a function of the number of events ob-
served per relationship. Each line denotes a different number of relationships
(nonzeros) in the 100× 100 infectivity matrix.

Figure 1 suggests that the number of observations needed per
relationship to achieve a certain error rate is roughly O(r polylog r),
which coincides with our intuition. In practice, we observe that
(for moderate network sizes), it is sufficient to observe an average
of roughly 10–30 events per relationship. We also note, however,
that matrices A with large dynamic ranges (the example here is
binary) require more observations to guarantee support recovery,
since weaker relationships are more rarely expressed.
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