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Abstract. In this paper, we propose a low-cost algorithm for recovering multitone signals from
compressive measurements. We introduce a simple and efficient modification to orthogonal matching
pursuit. Our approach uses a DFT basis, but refines the frequency estimate obtained at each iteration
via a simple gradient descent. We find that by adapting the dictionary in this manner we can realize
the benefits of an overcomplete DFT frame without incurring the increased computation. Numerical
simulations show that this approach not only outperforms traditional OMP, it even outperforms
`1-minimization unless we incur the computational cost of using a highly overcomplete DFT frame.
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1. Introduction. Compressive sensing has recently emerged as a framework for
acquiring sparse signals [1–3]. If a signal x ∈ CN can be written as a linear combi-
nation of K � N elements from some dictionary, we say it is K-sparse. Specifically,
given an orthonormal basis or dictionary Ψ, we say that a vector x is K-sparse if we
can write x = Ψα where α has at most K nonzeros. In the case where x is exactly
or approximately K-sparse, it is often possible to recover the signal from a number of
measurements that is much closer to K than N . Specifically, we can acquire M linear
measurements of x, represented as y = Φx, where Φ ∈ CM×N . The vast literature on
compressive sensing shows that under appropriate conditions on the product ΦΨ, it
is possible to accurately and efficiently recover the vector α (and hence x) [3].

However, in practice there are many natural signal models which appear “sparse,”
but for which there is no simple orthonormal basis Ψ that sparsely captures this
structure. For example, a common signal model in the context of compressive sensing
of analog signals is the “multitone” model, where we suppose that our signal x can
be represented as a sum of K complex exponentials:

x[n] =

K−1∑
k=0

ake
j2πnfk n ∈ {0, . . . , (N − 1)}, ak ∈ C, fk ∈ [0, 1). (1.1)

This signal appears very sparse—it can be described exactly via 2K parameters, and
appears to be a natural model for “spectral sparsity.” Thus we might consider setting
Ψ to be the N × N Discrete Fourier Transform (DFT) matrix, and indeed, this is
what is often done in practice (e.g., see [4]). However, in general this will not do a
very good job of sparsely representing x due to finite-window effects. To see why this
is the case, observe that the Discrete-Time Fourier Transform (DTFT) of a length-N
multitone signal is composed of a combination of K modulated Dirichlet functions:

X
(
ej2πf

)
=

K−1∑
k=0

ake
jπ(fk−f)(N−1) sin(π(fk − f)N)

N sin(π(fk − f))
. (1.2)

Recall that we can interpret the DFT as simply samples of X
(
ej2πf

)
at frequencies

f = `/N for ` = 0, . . . , N − 1. If the tone frequencies fk happen to all lie on the
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so-called “Nyquist grid”, i.e., for each fk there is an ` such that fk = `/N , then the
DFT will indeed sparsely capture the structure in x and have exactly K nonzeros.
In general, however, we cannot expect the fk to lie on this discrete grid. In that
case, not only is the DFT of x not sparse, it is not even very compressible due to the
slow-decaying behavior of the Dirichlet functions in (1.2).

To address this challenge, a wide range of more sophisticated approaches to recov-
ering such signals from compressive measurements have been proposed [5–8]. These
methods can be broadly separated into two categories. One class of methods aban-
dons the DFT in favor of more sophisticated spectral estimation techniques (for ex-
ample, [5, 6]). Unfortunately, such methods also come with significantly increased
computational requirements. The other broad class of methods applies existing sparse
recovery algorithms, but replaces the DFT with a redundant or “overcomplete” DFT
frame (as in many approaches discussed in [6] as well as the algorithms proposed
in [7, 8]). Specifically, these approaches replace the DFT orthobasis with a D × N
matrix whose columns are given by

ψf =


ej2π0f

ej2π1f

ej2π2f

...

 , (1.3)

where f ∈ {0, 1/D, . . . , (D − 1)/D}. Using this frame, we can then apply standard
sparse recovery algorithms such as `1-minimization [1, 2] or greedy/iterative algo-
rithms like orthogonal matching pursuit (OMP) [9, 10], compressive sampling match-
ing pursuit (CoSaMP) [11], or iterative hard thresholding (IHT) [12]. It is important
to note that the standard theoretical guarantees for these algorithms do not apply
when D is much greater than N since, in this setting, Ψ becomes highly coherent.
Despite the lack of theoretical guarantees, in practice these algorithms often perform
relatively well.1

The intuition behind this approach is that, by increasing D, the vector α becomes
a denser sampling of the DTFT of x. Now, we still cannot expect to be able to recover
the full DTFT (α is still not sparse). However, all of the sparse recovery algorithms
described above will aim to recover a good sparse approximation to α by attempting
to find the largest elements in α. The hope is that the DTFT will have noticeable
peaks very close to the frequencies {fk}K−1

k=0 , so that by finding the peaks in α when
D is relatively large, we will be synthesizing x with dictionary atoms relatively close
to the true tones which generated x.

Unfortunately, in practice we must often set D to be rather large to achieve
significant performance gains. This comes at a large increase in the computational
complexity of the sparse recovery algorithms (which are all at least linear in D). Here,
we present a simple modification of OMP using a DFT basis or only mildly overcom-
plete DFT frame that improves signal recovery for multitone signals while retaining
OMP’s low computational cost. We hope that this serves as an attractive alternative
in implementations that cannot afford the higher complexity of more sophisticated
methods.

1It is worth noting that there has been some recent theoretical progress regarding our under-
standing of the performance of algorithms such as `1-minimization and CoSaMP applied to certain
overcomplete dictionaries [7, 8], but our understanding of these scenarios remains incomplete.
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Algorithm 1 Orthogonal Matching Pursuit for Multitone Signals

input: y, Φ, G(·), stopping criterion
initialize: x0 = 0, Ω0 = ∅, ` = 0
while not converged do

p = ΦH(y − Φx`)
Ω`+1 = Ω` ∪G(p)
a`+1 = arg minz ‖y − ΦΨΩ`+1z‖2
x`+1 = ΨΩ`+1a`+1

` = `+ 1
end while
output: x̂ = x`, Ω̂ = Ω`

2. Our Approach. Our approach is based on OMP, described in our context
in Algorithm 1. The first step compensates for the fact that our signal is observed
through compressive measurements by forming a rough estimate of the signal via
p = ΦHy. Next, we let G(p) represent a function that takes a vector p and returns
some estimate of the dominant frequency in p. For example, the traditional approach
would consist of taking a length-D FFT and selecting the frequency corresponding
to the entry with the maximum magnitude. We let Ω represent a set of frequencies
and define a Fourier frame ΨΩ to be the N × |Ω| matrix with |Ω| columns of the form
in (1.3) at the frequencies in the set Ω. In words, OMP iteratively chooses a single
tone at a time, forms the best representation from the tones chosen so far, and then
repeats the process on the residual.

This algorithm is appealing for our approach because it only requires that we
estimate a single frequency at each iteration. Traditionally this is performed by
computing the length-D FFT and selecting the element with maximum magnitude.
Our proposal is to replace this step with an alternative approach. Specifically, if we

define Sp(f) :=
∣∣∣∑N−1

n=0 p[n]e−j2πnf
∣∣∣2, we wish to replace G(p) with the following

optimization program:

f̂ = arg max
f∈[0,1)

Sp(f). (2.1)

This will return the frequency in [0, 1) of the tone that is most correlated with our
signal. Unfortunately this problem is no longer a finite search (as with a DFT frame),
nor is it convex, so determining the optimum f is nontrivial. However, thanks to the
time-limited nature of our signal model, the DTFT of the signal is smooth (recall
(1.2)) and is locally convex in the vicinity of the solution. Thus, with appropriate

initialization we can find f̂ using a simple gradient descent. This initialization can
be accomplished using an FFT to sample the DTFT. For any frequencies where the
corresponding DFT coefficient is sufficiently large, we can then use gradient descent
to find a local maximum, and then estimate the global maximum by taking the largest
of these local maxima.

An algorithm that accomplishes this task is given in Algorithm 2. Ṡp(f) denotes
the derivative of Sp(f) with respect to f . This particular implementation uses the
secant method for the gradient descent stage. Note that one should choose D ≥ N
to avoid undersampling the DTFT, which can lead to a poor frequency estimate as
peaks may be missed entirely.

Even with sufficient sampling, straddle losses in the DFT can lead to slight mis-
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Algorithm 2 Gradient Descent for Maximizing Sp(f)

input: p, N , D, Λ = {0, 1/D, . . . , (D − 1)/D}
initialize: f̂ = arg maxf∈Λ Sp(f)

for all f0 ∈ Λ such that
Sp(f0)

Sp(f̂)
>
(

sin(πN/2D)
N sin(π/2D)

)2

do

initialize: f1 = f0 + sgn(Ṡp(f
0))/2D; ` = 1

while Ṡp(f
`) 6= 0 do

update: f `+1 = f ` + Ṡp(f
`) f`−f`−1

Ṡp(f`)−Ṡp(f`−1)
; ` = ` + 1

end while
if Sp(f

`) > Sp(f̂) then

update: f̂ = f `

end if
end for
output: f̂

0 0.2 0.4 0.6 0.8 1
0

5

10

15

f

 

 
DTFT
DFT

Fig. 2.1. Multitone signal where straddle loss complicates maximization

representations of peaks. Straddle loss arises from the fact that we are sampling a
continuous function (the DTFT) and the maximum of this sampling is unlikely to be
the maximum of the function. Thus it is necessary to check all peaks of magnitude
close to the largest to find the true global maximum, hence the “for-all” loop in the
algorithm. If this fact is neglected, one may instead find a local maximum that is
slightly lower than, though within the straddle loss of, the true maximum. An illus-
tration of this issue is given in Figure 2.1, where the largest peak in the DFT is not
in the vicinity of the largest peak in the DTFT. Due to the structure of OMP, this
is likely of minimal consequence in the final recovery and could probably be omitted
without catastrophic failure (a peak that is nearly missed in one iteration becomes
an even better candidate in the next). Moreover, increasing D beyond N reduces the
worst-case straddle loss, meaning that initializations near nonglobal maxima are less
likely to be considered.

3. Simulation Results. To evaluate the performance of this method, we com-
pare it to standard OMP and `1-minimization using a fixed DFT frame. This was
tested using 1000 trials with a frequency-sparse signal fitting the model presented in
(1.1) with |ak| = 1 and fk ∼ U [0, 1]. Because OMP is an iterative algorithm, this
choice for ak is something of a worst-case scenario. When tones are of varied amplitude
it is easier pick out the stronger, more obvious tones before removing weaker tones
that are distorted by the stronger ones. Each signal in the simulation has K = 10
tones, is of length N = 512, and is observed through a random sampling matrix Φ
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Fig. 3.1. Median recovery signal-to-noise ratio, median recovery sparsity, and average execution
time by overcompleteness.

where M = 100 of the N samples are randomly selected for observation:

ym = xnm
nm ∈ {0, . . . , N − 1} m ∈ {0, . . . ,M − 1}. (3.1)

We quantify our performance via the recovery signal-to-noise ratio (SNR) given by

20 log10

(
‖x‖2
‖x−x̂‖2

)
.

In Figure 3.1 we illustrate the performance of our gradient descent approach
compared to standard OMP and `1-minimization as a function of the overcompleteness
ratio D/N . Empirically, and as expected, in terms of SNR the performance of our
approach shows no dependence on D when D ≥ N . Thus, we can choose D to be a
small, convenient value and avoid the computational burden involved in dealing with
large D. The experimental results show that for small choices of D our approach
outperforms `1-minimization both in terms of the computation required as well as
the accuracy of the recovery x̂. For D sufficiently large, as suggested by [8], `1-
minimization does achieve superior performance. However, we see that this comes at
the cost of a notable increase in computational effort (because our approach performs
identically for any D, we can choose whatever value grants the fastest execution).

In Figure 3.2 we show the sorted magnitudes of the coefficients recovered by each
method for a single iteration of the above simulation. As one might expect, OMP
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Fig. 3.2. Coefficient falloff of recovery algorithms for instance of multitone signal with D =
2.5N , where our method and `1 minimization achieve similar recovery quality.

spends the first K = 10 coefficients hitting very close to each peak in the DTFT.
After this, it uses the remainder of its coefficients suppressing the residual parts left
over from the imperfect “hits” on the true frequencies. Hence the sharp transition
in the coefficient magnitudes. `1-minimization exhibits a much more gradual decay
profile. Our method is generally able to fit more energy into the earlier (and hence
less into the later) coefficients than OMP with a DFT frame because we can place
the earlier coefficients more precisely. Thus, beyond an improved SNR when D is
not significantly larger than N , an additional advantage of our method is that the
recovered coefficients have an added layer of “interpretability” and a closer degree of
correspondence to the underlying parameters of our signal model.
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